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Abstract

Meaningful visualization of large scale biological data is thefle achieving new
discoveries in system biology research. Typical types ofopichl data in research
includes: biological pathways or networks, biological ontologied, eéxperimental data.
Visualization tools used in these areas often fail to presemtamingful and insightful

view of underlining data.

We present a new interactive visualization tool, MetNetGE, whaeliufes novel
visualization techniques for three kinds of biological data: pathway, ogtalog omics
data. For a given biological pathway, we proposed a novel 3D laygarithim, aligned
3D tiered layout, which arrange the pathway nodes into differenst tio make the cross-

layer connection patterns stand out.

Biologists interested in a species may want to see all hundreasetabolic
pathways for that species. Instead of simply showing hundreds of pathwaone
network in a complex and incomprehensible graph, MetNetGE orgahizes pathways
based on the hierarchical pathway ontology, and visualizes theustrugsing the
proposed 3D Enhanced Radial Space-Filling (ERSF) technique. The EjRBiEhat uses
an orbit metaphor to present the non-tree edges in the ontology. Mappmgatve
omics statistics on the ERSF drawing aids biologists in e@shtifying highly activated

pathways or categories in an experiment.

MetNetGE uses Google Earth (GE) as the underlining visualizabol. All the
biological entities are converted to objects in the KML (KeylMékup Language) file
and loaded in GE.

A user study with 20 participants to demonstrate the improved esftigi of
MetNetGE over Cytoscape regards certain biological tasks. AlthilegNetGE requires
higher learning time (680 seconds vs. 350 seconds) on average, itpheipgants
quickly finish the tasks. Results showed that the completion tinusing MetNetGE is

about half of using Cytoscape.
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Chapter 1. Introduction
Biomedical networks are widely studied to reveal the comphgractions between

genes, gene products and cellular environments in biological pescgss3]. Popular
representations of such networks are the node-link graph and thenagljatatrix. In the
node-link graph, nodes represent genes, gene products, metabolites and reaudions,
edges represent specific interactions, e.g., transcription, tianslaatalysis, and a

variety of types of regulation.

The availability of high-throughput experimental data provides new phbigsgito

system biology, and creates new challenges for visualizdibols as well. These
experiments normally involve thousands of RNAs, metabolites and/or pabgept
Mapping such data onto an interaction network can help biologists gehgpattheses

about how the parts of the system influence each other.

A number of publicly accessible pathway databases are avaitaivitaining data about
genes, gene products, and interactions, such as, BioCyc [2] MetNetDB [3] &@ KE

In order to get better insight into such data sets, many viatiahztools have been
invented, e.g., Cytoscape [5], VisAnt [6]. In a review, Sudermaal.€f7] studied 35
visualization tools and noted key useful features such as genevagood layouts and

integration with analysis tools.

Despite the recent emergence of many pathway visualizatios) motent tools are not
suitable for many tasks. One important challenge is how to migkalization of the
whole network meaningful. Other challenges include creating metfaydshowing

hierarchical relationships, e.g., pathway ontologies, and devisingapgvwaches for

interactivity between analysis and visualization that maseak hidden relationships.
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These functionalities are crucial for biologists to explore, wided and make

connections among the data.

Biologists wish to visualize the pathways organized in a meaningdniner. They also
want an overview of the experimental values for the categaigs they want to be able
to ask questions such as whether degradation pathways have many hggrigs

expressed, or which categories are overrepresented in the data.

In order to meet these criteria, we have created a sofflatferm, MetNetGE, which
provides a hierarchical view of the pathway ontology and maps theireepéal data
onto this view. Preliminary user study with biologists in owugrshows that MetNetGE
can improve efficiency in many daily tasks and allow explorationes¥ patterns in the

data.

MetNetGE is also designed to aid biologists in better understamdimplex individual
pathways, using a 3D tiered layout, where different entity types interactions are
located on different tiers. The algorithm computes layout baselgednidlogist’'s current
selection of the most important plane, such that the pathway structated on that

plane stands out.

1.1. Background
Biological networks and pathways are widely studied to revieal dcomplex

interactions between genes, gene products and cellular environmemislagical

processes [1-3]. Popular representations of such networks are thenkogieybh and the
adjacency matrix. In the node-link graph, nodes represent geeeg, groducts,
metabolites and reactions, and edges represent specific fiolesa®.g., transcription,
translation, catalysis, and a variety of types of regulatiéing.0.1 shows a typical

pathway diagram in biology textbook [8].
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Fig 0.1 The pathway citric acid cycle shown in a biology textboak [8]
The availability of high-throughput experimental data provides pessibilities to

system biology, and creates new challenges for visualizatibols as well. These
experiments normally involve thousands of RNAs, metabolites and/or pabjgept
Mapping such data onto an interaction network can help biologists gehgpatiheses

about how the parts of the system influence each other.

Biological Ontologies are part of an effort to create controlledabularies for
shared use across different biological process. Typical ontolaggepathway ontology
[9] and gene ontology [10]. Fig 0.2 shows the pathway ontolody.adli in traditional

tree list view from EcoCyc [11] web.
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- Pathways

=

~Biosynthesis (136)

+-Amines and Polyamines Biosynthesis (9)
~Amino acids Biosynthesis (40)

- Aminocacyl-tRMNA Charging (1)

~Aromatic Compounds Biosynthesis (2)

- Carbohydrates Biosynthesis (8)

Cell structures Biosynthesis (10)

Cofactors, Prosthetic Groups, Electron Carriers Biosynthesis (38)
‘Fatty Acids and Lipids Biosynthesis (20)

- Metabolic Regulators Biosynthesis (1)
~Mucleosides and Muclectides Biosynthesis (9)
- Other Biosynthesis (2)

~Siderophore Biosynthesis (1)

i b b

~DegradationsUtilization/Assimilation (104)
~Detoxification (6)

+ Acid Resistance (2)

+- Methylglyoxal Detoxification (4)

Generation of precursor metabolites and energy (26)
Signal transduction pathways (21)

‘Superpathways (53)

Fig 0.2 Pathway Ontology Tree from EcoCyc: http: ecocyc.org/

Understanding the PO structure helps biologists form a mendégjeiraf the interactions

within the biological system. However, in day-to-day researchogists need to make

sense of system-wide experimental data and wish to understanch@oexgerimental

conditions affect the underlying biology. One typical type of erpental data is gene

expression, which describes the abundance of gene transcripts durggpeximent.

Other experimental data include metabolomics and proteomics. Foegerssion data,

the original data is typically a data matrix where each dewscribes a gene, and each

column records the expression level of genes under a certain condity., one time

point, one treatment, or one replicate.

One pathway normally contains several genes, but it can range up to huirdreds

signaling or regulatory pathways. One pathway category, in twontains several

pathways and by extension a group of genes. Therefore, we caa dajroup of genes

for each pathway and category. In order to understand the experimaritioctional or

even system-wide level, biologists try to derive aggregated viduesch pathways and
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categories, e.g., the average expression for all the gereepathway or the number of

differentially expressed genes and their p-values.

1.2. Existing Solutions and Limitations
We visualized three different kinds of biological data: the pathavagrams, pathway

ontology, and the omics data. The data which is most well studigtei pathway
diagram. Dozens of visualization tools were developed and severamfare still under
active development nowadays. In a review, Suderman et al. [7] stusliedu&lization
tools and noted key useful features such as generation of good layoutgegnation

with analysis tools.

One of the most important features for the pathway visualizabioinis how good
the tool is to layout the pathway in a meaningful manner. Tlddtiomal 2D based
layouts are very suitable for small pathways, e.g. the pathwiylegs than 30 nodes,
and 50 edges. However, when the pathways become larger andddggecrossings will

occur very frequently, and the graph’s connectivity will be difficult to deteemi

3D algorithms can eliminate the edge crossings by arrgngides in 3D spaces.
However, since the look of the pathway may change too much from ito@mierpart,
biologists who are used to viewing the pathway in 2D have diffiauityerstanding the
3D diagrams. Another problem of 3D layout algorithm is that it ba quite hard to
navigate a network in a 3D space, especially when using input desiaeh as keyboard

and mouse [12].

Biologists often view and explore the ontology on websites, e.g. ecogyor
geneontology.org. All these websites use the tree list vieprdsent the hierarchical
structure of the ontology. Some desktop tools also exist to aickpheration of complex

ontology using node-link graphs, e.g. OBOEdit [13]. However, the tstevikw and
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node-link graph have limitations that they can’t view the whole oggoktructure in a
single computer screen, thus failed to generate an overview of thlegyntMoreover,
the ontologies are actually directly acyclic graphs (DA@)em each node may have
multiple parents. All the above methods can only show tree struammgreluplicate the
nodes that have multiple parents, thus the important existence oplmuitieritance is
hidden. Another limitation of those methods is that they can not majplattributes

onto the ontology nodes.

One of the most well studied and important experimental datansctriptomics
data, also known as gene expression data. It recorded the expressioof leach gene
under certain experiment conditions. Typically, researchersstoile and view this data
in a large data matrix, where each row represents one genaa@mndaumn represents
one condition. Since combining the transcriptomics data with the pattiagsam may
lead to new discovery about the pathway, many visualization toolsdprtve ability to
map the expression values on the pathway diagram. However, since mpatmaby
layout algorithms can not handle very large graph, the numbenetdbey can show at
a given condition is also limited. This limitation prevents biol@gisbm studying the

transcriptomics data in a large and system level scale.

1.3. Overview of Proposed Methods
Based on the survey [7] in biological visualization field and inesvgi with our

biologist collaborators, the requirements for the pathway visualization are:

® Reduce edge crossings to maintain a comprehensible with of theagathw

structure which may contain more than 50 nodes.
® Clearly show the pathway structure

® Make the significant part of the pathway stand out.
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® Showing detailed information on demand, i.e. hide unwanted information.
The requirements for ontology and experimental data visualizations are:

® View the whole ontology in one screen to have a global feelingeadidba and the

main hierarchical structure.
® View details by navigation and/or interaction (zoom, pan, rotation).

® Map experimental data and other aggregated attributes on the ontologgt so

they are easily visible.
® Clearly show non-tree connections.

During our research, we developed the software platform MetNetGEhvean
provide an integrated visualization solution for all above three typeataf the pathway

diagrams, pathway ontology, and the omics data.
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Fig 0.3 The three types of data visualized in MetNetGE.
The small picture around each data is some traditional methods to view them.

Fig 0.3 shows the three different types of data which can be visualized in tk3&Ne
The small pictures around each data are the traditional methotsat them. There are
also several existing approaches to integrate two of the §pes of data. For example,
Cerebral [14] and many other tools maps gene expression data omyalhgram, and
Baehrecke et al. [15] use treemap to map the expression datanenoglogy.
MetNetGE is the first system which can integrate allaibeve data into one visualization

system.

Since there may exist hundreds of pathways for a given spéyasy out all of

them together inevitably will result in a dense and cluttereghgrWe try to avoid this

Ol LAC U Zyl_ﬂbl
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problem by organizing the pathway diagrams by pathway ontologypMfgosed our
algorithm, Enhanced Radial Space-Filing (ERSF) technique to lagodt show
ontology. Each ontology node is represented as a colorful region in thimgirand the

detailed pathway diagram is drawn inside the region.

To handle larger and much complex pathway diagram, we proposed the novel
Aligned 3D Tiered (A3T) layout algorithm, where the graph coniples reduced by
separating the nodes into 4 parallel planes and were aligr8idl space. By controlling
the transparency of each plane, we can easily hide the unwaaf@ddetails and show

them when user needed.

To enable the study of large scale transcriptomics data, agesomme cumulative
expression value on the pathway ontology drawing. As a result, biclatast easily
identify which pathways and categories are highly expressed dartain condition.
Moreover, we can also map the difference of expression values betweeonditions,
thus help biologists in finding differentially expressed genesald@ provide the ability
to visually navigate the gene expression data on individual pathwdsabyng extruded
polygons on the pathway diagrams. The parallel coordinate ploé¢sarene helpful way

to see the trend of many genes across several conditions.

In order to demonstrate the improved efficiency of MetNetG& canducted a user
study with 20 participants. Participants used MetNetGE and ctimaparing tool
Cytoscape to finish selected biological tasks after complatitugorial section. The tasks
are selected based on the visualization requirements and alestiaet#ons of real tasks
biologists need to perform in day-to-day work. Although MetNet@guires higher
learning time (680 seconds vs. 350 seconds) on average, it helps pasicpekly

finish the tasks. Results showed that the completion time of using MetNetG&uishalf
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of using Cytoscape. For example, to find highly related categamiesne pathway
ontology of about 200 nodes, participants averagely used 133 seconds etGEethhd

324 seconds in Cytoscape.

1.4. PhD Research Contributions
My PhD research includes contributions to engineering, algorithm andarhum

computer interaction (HCI) areas. From the software engmgegrspective, | developed
the software platform MetNetGE to support 3D visualization ofogichl data in Google

Earth (GE) and the contributions include following:
e Provided an integrated visualization solution for pathway, ontology, and omics data.

e Developed APIs for python software to create 3D geometries, mahanimations

in GE.
e Developed many interaction methods with GE.
From the algorithmic perspective, my contributions are following:
e Proposed and implemented the novel Aligned 3D Tiered (A3T) layout.

e Proposed and implemented the novel 3D Enhanced Radial Space Filling)(ERS

layout.

e ERSF does not replicate nodes when the multiple inheritancesrexis heretical
structure, which reduces graph complexity by 13% (for pathway onjotog®6%

(for gene ontology).

e Link the traditional treelist view with the RSF drawing, to eraldtailed navigation

with context visualization.
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e Proposed and implemented various ways to map gene expression datseand
representation value on the ontology visualization to enable the studyics data

on both pathway and gene ontology.
From the HCI perspective, my contributions are following:

e Conducted a relatively large scale of user study including 2Cipanits to evaluate

MetNetGE and Cytoscape.
e Used statistical methods to analyze the study results.
e Used HCI related theories to propose possible explanations of the user study result

1.5. Organization
This paper is organized as follows: Chapter 2 describes datmlst the related

work and current solutions. Chapter 3 shows the implementation and frameesgn
of MetNetGE. Chapter 4 illustrates the proposed 3D Tiered layoaip&ong it with
existing layout algorithms. Chapter 5 introduces the use of 3D ER&8Hique to
visualize and interact with ontologies. Chapter 6 explores the vaviays to map
experimental data on the ERSF drawing. Chapter 7 presents selim@nary result with
several typical working scenarios of MetNetGE. Chapter 8 tiieepurnal paper format
to include one paper prepared for submission. Finally, Chapter 9 cont¢hedegole

thesis.
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Chapter 2. Related Work

2.1. Biological Pathway Visualization
A number of publicly accessible pathway databases are avaitaivigining data

about genes, gene products, and interactions, such as, BioCyc [2] DiBtl&jt and
KEGG [16]. In order to get better insight into such data sets, meuoplization tools
have been invented, e.g., Cytoscape [5], VisAnt [6]. In a reviewerwh et al. [7]
studied 35 visualization tools and noted key useful features suclesaigen of good

layouts and integration with analysis tools.

Despite the development of many pathway visualization tools, cuoelst are not
suitable for many tasks. One important challenge is how to wiakalization of large
networks meaningful. Unfortunately, the current tools with tradititengdut algorithms
typically results in the notorious ‘hair-ball’ view (as in Fig 2fby such a densely
connected network. This view gives the user very little informnagibout the structure of
the network. Other attempts to make meaning out of large graghsleéncolor coding
according to feature, layouts that separates out parts ofdpb by features, etc. Other
challenges include creating methods for showing hierarchilediamships, e.g., pathway
ontologies, and devising new approaches for interactivity betweerysanahnd
visualization that may reveal hidden relationships. These functi@sahtie crucial for

biologists to explore, understand and make connections among the data.
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T s

B

Fig 2.1 All the pathways of Arabidopsis from MetNetDB avaded in Cytoscape and shown in
organic layout.

2D layouts are especially favorable for the visualization of individual pathsags
traditional diagrams are all drawn in 2D. 3D approaches exist1fd]7,however most
popular bioinformatics tools do not support 3D directly. Some reasons th&ty8t
methods are not widely adopted are: biologists are used to 2D raptese and it's
hard for them to make sense of those 3D structures and 33 sp@acbe hard to navigate.
Even with proper navigation tool such as 3D mouse, the advancedtilsaeed a lot of
time to smoothly explore the space [12]. Fig 2.2 and Fig 2.3 showsctioeegi of some

3D approach.
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Fig 2.2 A snapshot of VRML Metabolic Network Visualizer [17].
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Fig 2.3 Metabolic pathways are shown in MetNetVR [18] in virtuditsea
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The use of stacked 2D layouts was introduced in [19], where similar pathways acros
several species are compared. This representation (as shown2id)Hs very effective
at highlighting small differences between two species; howive not suitable to be
directly applied to individual pathway diagrams due to the lack of chioms between

layers.

Fig 2.4 Visualizing related metabolic pathways in two and a half dimes§19].
Arena3D [20] puts nodes into different layers based on node typedal reeveral

cross layer insight (in Fig 2.5). BioCichlid [21] divides protein @ethes into separate
layers to visualize the cross layer patterns. These works gteowromise of using an
extra dimension where the network complexity is reduced by seypathe whole graph
into several 2D planes. However, since they compute separatesldgowgach layer,
edges between layers are often cluttered and difficult towialvhen used in individual

pathways. We independently proposed to utilize the 3D tiered layoaaébr individual
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pathway using an aligned 3D layout. The algorithm aligns theddyased on a user
selected important plane to make the basic pathway structun@ stut and create more

aesthetic drawing.

atni
I. .‘.

atxn?

Fig 2.5 The layered layout in Arena3D [20] to show relationship betweteips and genes.

When biologists want to view the whole picture of all pathways $pecies, they
normally using visualization tool to load all pathway data, and dr@m in the same
view. However, due to the large number of pathways, there mdyobsands of nodes in
the view and most of them are connected, which results in a Higlikbastructure (Fig
2.1). The dense ball on the upper left part in the view is impogsiloierpret even when

zoomed in and using color coding on the network.

Researchers have tried ways to better organize all pgthwMetaViz [22] can
preserve the structure of important large pathways, and show compoiments
superpathways in adjacent regions (in Fig 2.6). Although the superpattoagep their

structures, the rectangular black lines connecting pathwadiladifficult to trace. User
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studies found that the rectangular layout is quite ineffective tésks regarding

understand the topological structures [23].

Instead of keeping the connections between pathways and generating a
incomprehensible graph, EcoCyc [11] employs a cellular overview f&r.@ili pathways
where each pathway is represented as a small diagram (iB. HigThe grey regions
wrapping the pathways indicate that those pathways are fronathe categories under

the notation of pathway ontology.

|
\

Superpathway
of phenylalanine B
tyrosine, and
tryptophan

biosynthesis

Sup erpathway of
"ﬁ-—har,tldine purine and

pyrimidine blosymthesis

enterob actedial
common anfigen
biosynthesis

Fig 2.6 Whole metabolic network of E. coli drawn by MetaViz [22].
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Fig 2.7 Overview of the Escherichia coli K-12 substr. MG1655 Metabdig from EcoCyc [11].

2.2. Biological Ontology Visualization
As shown in the EcoCyc omics viewer, structures such as ontelagie help

organize biological information. Therefore we organize biological otvioy pathway
ontology (in Fig 0.2), which consists of a spanning tree and severateepdges. Tree
visualization is a well-studied research topic: various technigaes been proposed and
implemented to support trees containing thousands of nodes. Popular methods are
treemap [24, 25], radial space-filling [26], cone tree [27], and Hngbie layout [28].
Hyperbolic trees are suitable in exploring large tree or-trear structures. However,
since we want to insert detailed pathway structures intcetifebdes, we cannot use the
hollow sphere employed in such hyperbolic trees. Also, the smak gfs&d to draw each

node is not appropriate for mapping experimental data. Treemap (Fip Hag3the
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advantage to show attributes for thousands of leaf nodes, howevenoit ssiitable to
show attributes for non-leaf nodes (which may consist half of the rinde®logical
ontology). Moreover, general treemaps can not show non-tree edgds avbio/ery
common in biological ontologies. Fekete [29] tried to overlay the rem#dges on a
treemap (in Fig 2.8), however, this attempt creates many edgsi#tgs which makes the

task of tracing non-tree edges difficult.

Fig 2.8 Overlaying non-tree edges onto treemap [29].
Current tools to visualize biological ontology normally use the ticadil windows-

explorer-like tree list, e.g. EcoCyc [11] and AmIGO [30]. Somekiags applications
designed specifically to show ontology are also available, e.@EdR [13] and BinGO
[31] (in Fig 2.10). The OBO-edit (in Fig 2.9) can visualize the ontologl toth one
windows explorer-like tree browser (Tree Editor) and one graptiealdrawing (Graph
Editor). However, these tools all utilize node-link based top-dowratuleical layout to
graphically represent the ontology. This kind of layout, such as detelissuited for
dozens of nodes, however, will quickly become cluttered if all hundoédsmtology

nodes are shown together. As a result, users of these tools Igocolpse the whole

oL fyl_llsl
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ontology, and only expend the hierarchy to the required extend, thuthésentext of
the whole ontology structure. Moreover, biological ontologies are nottmeestructure,
but the Directed Acyclic Graph (DAG), i.e., several child reodave multiple parents.

Current tools are not suitable to trace such connections.

& ‘_,,!i Ontology Editor
B— Classes =
B— biclogical_process
B cellular_component
B4+ cenl
B+E cell part
+—) 3-phenylpropiod

zzzzzzzzzzz

B+ bud
E+@ bud nack
[ 40 bud tip
PR S —— |11
0 thoptry
B+ site of polarized
[ +—€» bud neck

GsEliasew

DAG Viewer

B Classes
= cellular_component
B € cell part
B © bud
[ bud neck
El €9 site of polarized growth
© bud neck
B O cell
B @ cell part
= O bud
2 bud neck
B € site of polarized growth
€ bud neck

-

|Options selected to root |+ | Save

Fig 2.9 OBOEdit [13] which can view and edit gene ontology structure.
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Fig 2.10 The Cytoscape plug-in BinGO [31], which can view gene ontahsigyel Cytoscape.
As mentioned previously, all the tree visualization method can only daadé tree

structures. If the input graph is a DAG, the above methods duplicdes.ndhe node
duplication not only increases the graph complexity, but also can nawretwie
interesting multiple inheritance information. If users need to swape attribute on the
graph, the result gets even more confusing, e.g. one drawing eweywrthat two
different parts in the graph are highly active, but finally find thety are only duplicated

nodes of each other.

2.3. Transcriptomics Data Visualization
Transcriptomics or gene expression data recorded the expreasbofleach gene

under certain experiment condition. Typically, researchers tgilesand view this data in
a large spreadsheet, where each row represents one genelandlemn represents one
condition. Besides organizing the pathways in a meaningful mannesgisis| also want

an overview of the experimental values for the categories, e.g., theyoN@nable to ask
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guestions such as whether degradation pathways have many geng<skpybksed, or

which categories are overrepresented in the data.

Many works have been done to incorporate gene expression data ontoypathwa

diagrams. Cerebral [14] is a Cytoscape plug-in which allcses to map gene expression

data on loaded pathways, and mapping the absolute value as wefesenddé between

conditions on node colors (in Fig 2.11). Researches also compared rpesentations

of time series gene expression data [32], e.g. heatmap, lines @mal complex node

glyphs (in Fig 2.12).
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rallel Caordinates Chart x|

Fig 2.12 Comparison of different strategies to map gene expressaoardpathway nodes [32].
Gene expression data can also be mapped to gene ontology. BaehralcKé 5t

have mapped microarray gene expression data on gene ontology witlagre€heir
representation is good at showing the information for bottom level ogtdkmns;
however, the hierarchy of ontology is not clear. Since the gene onislogy a pure tree,
many ontology terms present in several different regions, whigkes the drawing a
little bit confusing, e.g. user identify two regions have sameessjon value, but only to

find out they are actually the same region.

PIRIANFET R IWURDUIEN
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Fig 2.13 Use treemap to show gene ontology and microarraydigibcating gene nodes since it's not a
tree.
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Chapter 3. System Framework and Implementation
3.1. System Framework
The MetNetGE system is composed of four major modules: patioader,

ontology loader, Transcriptomics loader, and Graphical User logerf@Ul). Fig 3.1
shows the framework and the relations between those major moduéegs. dds mainly
interacting with the GUI to open files, and customize options. daaralso directly
navigate the drawing in GE using GE’s own navigation widget; howéwve navigation

assistance from MetNetGE is very helpful in exploring our dataset.

Graphical User Interface

o Eil Customize Navigation Advanced Overview Information
pen Files Options Assistant Interactions Dialog Dialog

—

Pathway Loader Ontology Loader Transcriptomics Loader

Python XML
Loader Fat)::'l:;ay.

Ontology
Parser

Ontology
file

Load

Mapping File Malgr;ng

File Data File
Create DOM for KML file

Layout Generation

e -

Normalization

Create DOM Object Match Genes in Pathway and

Generate Levels of Details
ontology

KML Loader

Map gene values on the
drawing attributes

Levels of Detail
e\re:ocr)‘tro? alls Icons, Regions for nodes KML
and edges Generator

System Framework

<TimeSpan> Tag for animation

[t

Fig 3.1 System framework of MetNetGE.

The system contains four major modules. The loader modulesspanggble for different data types.
The loaders process the data, generate layouts, and map the #dth elements. All data are
generated as KML file and loaded in GE.

A typical working scenario of using pathway loader is that a fust opens one or

multiple pathway files through GUI, then customizes the settingpwaf he/she wants the
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network to be generated, such as layout, color and icon style, theatgether KML file

for pathways and finally visualize the file in Google Earth (GE).

The use of ontology loader is quite similar, and we support the padigeneral

ontology data in obo format.

After loading either the pathways or gene ontology, user canxpsgimental data
loader to read a data file and mapping file. In the current stagesupport the gene
expression data in plain text format, e.g. comma-separated valg¥3, (or tab separated
values. The program will then use the mapping file to scapdtievay or ontology data,
and finally associate the data with loaded pathways or ontoldggn user can choose

different visual mapping options, and generate the KML file to show in GE.

The full User Interface of MetNetGE consists of three djalavhich are all floating
on top of Google Earth window. The main dialog (Fig 3.2a) contains afutiotions to
import, customize and create the ontologies and pathways. Usehaase the 3D tiered
layout, or change to dot, spring or many other layouts. User samalke the planes of

each tier hidden or transparent to expose the underlining structures.
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Fig 3.2 The dialogs of MetNetGE’s GUI.

(a) Main dialog contains buttons for loading data, navigation arslomization of the
visualization. (b) Information dialog contains detailed informatibontology, pathway and gene
data. (c) Overview dialog contains parallel coordinate plot and legends

The information dialog (Fig 3.2b) contains a traditional list andetai#w of the
loaded ontology, which is linked to the ERSF drawing in Google Earthsédleetion of
ontology item in the list/table will highlight the correspondiregion in the ERSF

drawing and vice versa.

The graphics dialog (Fig 3.2c) can show the parallel coordipktis of gene
expression value for the selected genes. The poly-line whichsegsethe currently
selected gene will be highlighted as red. This dialog also cortensgends for all the

information drawn in Google Earth.

In addition to the use of orbits metaphor, MetNetGE provides somedadtmbe&is to
make the task of viewing relationships between ontology regions sjoifde. User can
first select one region by clicking on either the ERSF drawmitpe ontology list/table in

information dialog. Then, by pressing the button “View Relatdth&l ontology regions

will be colored differently based on their relation to the setertgion, e.g. regions share

oL fyl_llsl
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a common child with the selected ontology node will be colored daflowy
Furthermore, if user clicks on one access point, he will be providadoptions to view

the child or the parent.

MetNetGE also provide several functions to aid the navigation in 38 spay. user
can click buttons to fly to the corresponding tier of selecteloaat. Interested users can

view the documentation on project website (www.metnetge.org) to know more.

3.2. Implementation
MetNetGE was implemented in Python. After the loading and computatlbn,

pathway and ontology drawings were created as KML (Keyhole Markanguage) files,
and were loaded into Google Earth through its COM API. The grapiseal interface
(GUI) is written with PyQt. To run MetNetGE, user need taald$ython 2.5 or above,
and several dependent open source python libraries. The documentation ewt proj

website (www.metnetge.org) provides download for all required libraries.

3.3. Icon Representation
We use icons to represent entity nodes in the pathway. Using hawes many

advantages over traditional use of color and shape combination fordasmns. First,
human perception can only easily distinguish roughly one dozen colorfjuesich are
not enough for a variety of information biological data presented. Howthneenumber
of distinguishable icons is much more than a dozen. Second, icons in Gltoare with
fixed screen size, i.e. no matter you zoom in or out, it alwagspies a fixed area
convenient for recognition. This characteristic is very helptugén a viewer zoom out to
see the larger structure while still want a clear sight@fiames of nodes. Third, icons in
GE are clickable, and its description tag would be shown asag avdien it is clicked. In
this way, we can store all the detailed information of each notleei description tag of

icon including URLS.
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3.4. Control of Levels of Detail

Since the metabolic network normally contains many pathways, shdlang all
together would challenge user’'s cognitive load capacity. To adthiessproblem, we
have explored one of GE’s formal mechanisms and find that we taheséevels of
detail (LOD) and separate the whole scene into four diffeeseld. As user zoom in, GE
will automatically change the level from one to four. Therefarehis way our system
automatically hide unimportant details or information that usessrmbevant at that
moment, e.g. when visualizing the whole network, the icons of individuak gaeenot

visible.

The four levels in the current configuration are: species, netwathway and
entity. The visualization details are increased from level lewell4 gradually and
automatically when user zooms in. LOD enables user to derive bmlegical insights

for individual genes at entity level and for functional relationships at network leve

3.5. Advanced Interaction Methods
Although GE provides convenient navigation and edit abilities for thdetba

network, they are not sufficient for an interactive network viga#bn tool since our
proposed layered layout need fast ways to navigate each layeefdraewe utilized
GE'’s extended features to implement such advanced interaatibns ways. One is the

Windows COM API; the other is the combination of network link and Update tag.

The Google Earth COM API allows third party applications to quefgrmation
from and send commands to Google Earth. Through the IApplicationGEaa#er
applications can query the current viewport, control the 3D viewpointMdefeatures

and determine the currently selected feature.
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GE also officially supports the method of using <Update> elen@nthange
features in network link. In addition to pointing to files containingic@dta, a network
link can point to data that is dynamically generated by a C@itdocated on a network

server. For detailed explanation and example of how it works, please refer to [20].

Both COM API and network link can provide the ability to create ohyoaraphs,
however, neither of them is perfect. Further development is needeakie both methods

user friendly.

3.6. Integrated Control through GUI
As shown in the Fig 3.1 of the system framework, the user can cailrtie

modules from MetNetGE's GUI. In order to provide user a clean waewontrol, the
main GUI dialog is designed as small as possible, and it isrsheva floating dialog on
the upper left corner of the screen. Each type of user actiensarsged to different tabs

on the GUI window.

The available actions from GUI include loading the data fdastomize the layout
and color scheme, and set visibility of certain part of data. Asrided in section 3.6,
user can select nodes that they are interested, and highlightefghibors or nodes with
high correlation in the ‘Highlight’ tab (See Fig. 4). The otfemture of GUI we are
currently developing is a general purpose list and search vientities. The reason is
that the default tree list view from GE will list every KMelements in the file, but what

we want to see is the conceptual nodes and edges.
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Chapter 4. Aligned 3D Tiered (A3T) layout of Pathway
Visualization

Although Arena3D [20] and BioCichlid [21] have published algorithms of shgwi
staggered layers in 3D, MetNetGE features an aligned 30 ti@yeut. By separating the
nodes into different layers according to their types, we cangeaviclearer structure of
metabolic pathway on the metabolite layer, or signaling pathwathemprotein layer.

This is the main reason why layers need to be used and aligned.

4.1. Layout Algorithm Description
The pathway diagram is denoted as a graph G, wke«d/, E>. V is the set of all

nodes, and is the set of all edges in the graph. We also separateottes into subset

V,,i=0,1,2,Z whereV, represents all nodes Gl layer. Each layer can contain any

subsets of nodes. For our specific data of pathway networks, dhe afost common

choices is to divide nodes by type. Thusrepresents all nodes on metabolite layer,
V, represents nodes on polypeptide layer\gn®,on RNA and DNA layer respectively.
We further define the subgragh=<V E >, whereE =<edge(u,v), u, e M>. Thus
subgraplts. is composed of all nodes fromand edges withiy .

The layout algorithm in Arena3D is tier-independent because agehn lays out

nodes independently. The links between layers are then drawn as liwegrbéayers.

The algorithm is described below:

TierIndependen):
For (ifrom 0 to 3):

G, = subgrapli G V)
LayoutG )
End For

Connect remaining edges{®-u,_,,;G}
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One major difference between the MetNetGE layout and previousi®ilest our
node placement is based on one major plane, rather than computing pawch la
independently. We compute the layout of nodes on the subgraph of naajerfipst, and
then set other nodes based on their relation to the nodes that hady dkeen placed.

The algorithm works like the following.

TierDependentg, imp: //The algorithm for A3T layout. Imp: id of important plane.
G, = subgraplt G V,,)
Layout(G,,,)

NodeSetT =V, // Represent nodes that are already positioned.

NodeSetR=V -\, // Represent the remaining nodes that need to be positioned.

While (R is not empty):

Find every nodee R, andv is connected by nodec T, andv, uarenot on the
same plane, put all suetinto NodeSetP,

For everyv e P, placev with the same, y position asu, so it's directly above o
underu.

=

RemoveP, fromR, and addP, to T

Find every nodec R, andv is connected by node< T, andv, uare on the same
plane, put all suckiinto NodeSetR,

Get the grapl@, which is composed by nodes Bf, u and edges between them
Layout(G,, with the positions ofi fixed.)
End while

The A3T layout algorithm allows input to choose arbitrary planéhasmportant
plane. However, in the context of pathway diagram, the pathway tsgedg suggest
good plane to use. Metabolic pathways will use metabolite plarleeasnportant one
since the metabolites consist the major structure of the pati®igyaling pathways, on
the other hand, will use polypeptide plane as the important one thiegeroteins are
playing important roles in those pathways. Following sectionsgiviéé example of these

two types of pathways.
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4.2. Complexity Analysis of 3D Tiered Layout algorithm
Assuming the input network hasnodes, the number of edgeQ¢n’). Assume the
3D Tiered layout will split the node set inkolayers. Then each layer contam=n/k
nodes. The complexity of layout algorithBiwe use to generate layout for one layer is
G(n), and it can range fror®(n) to O(n*) depending on which algorithm we choose to
use. For simplicity, assume we use force-based layout wh@fnis Then, if we use this

layoutG on whole pathwayG(n) = O(rf).

In the 3D Tiered layout, the complexityT$n) = G(m)*k = O((n/kf*k = O(n*/k?) <
O(n®). In a typical data sek is quite small, the gain in complexity reduction is not so
significant. However, if this algorithm is used in dataset bes large value dof, the
computational complexity can be significantly reduced. The usrgjem,m,k of real

pathway data are summarized as in the following Table 1:

Table 1 The typical value range for nodes, edges and layers in biological pathway.

Variable n nodes t edges m k layers

nodes/layer

Range 50-300, 50-300 20-100 2-4

4.3. Layout Example of Metabolic Pathway
The utility of the A3T layout can be shown using one example yfieal metabolic

pathway. For comparison, we first use Cytoscape’s organic layuah is a good force-
based layout to show the pathwagthylene biosynthesis and methionine cyélem

MetNetDB[33]. The resulting drawing is shown in Fig 4.1left. Thawdng appears to
contain some pattern such as a closed cycle. However, thosempaite not easy to be

detected.
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Fig 4.1right shows the result of our A3T layout for the same pathlva clear that
there is a cycle on the metabolite layer which means it nsetabolic pathway with
feedback. The three blue edges coming from the polypeptide layes shatithose three
protein complexes are catalyzing the three metabolicioeacabove them. Other nodes
on the polypeptide layer represent the proteins that compose those pootgilexes, and
each protein is translated and transcribed by the corresponding &MADNA

respectively.

The advantage of the A3T layout in this example is clear: @jermstructure of this
pathway become obvious. Moreover, if user navigated to the metdbgkte they will

find the drawing resembled the traditionally 2D layout, which is famiidnidlogists.

Fig 4.1 Visualize one metabolic pathway.

The pathwayethylene biosynthesis and methionine cyislerawn using ‘Organic’ layout in

Cytoscape (left) and 3D tiered layout in MetNetGE (right). Tietabolite layer is chosen as
major plane. It is clearly shown in 3D tiered layout that thtevpay present circular structure in
metabolite layer and three protein complexes catalyzed metalealations (blue edge from
protein layer to metabolite layer).

-
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4.4. Layout Example of Signaling Pathway

An example of signaling pathway, tlehylene signalingpathway, is layered out
based on polypeptide layer. This pathway is much more complex thanetheus one.
Ethylene signalings one typical signaling pathway of Arabidopsis [3]. Fig 4.2ik#itill
the organic layout from Cytoscape. Red and green lines represgstive and positive
regulations respectively. This view does not show any cleactste. The 3D tiered
layout for this pathway is shown in Fig 4.2 right. Some interesaagures immediately
catch our eyes. For example, there is one metabolite (ethylega)ively regulated many
proteins. It is also noteworthy that one protein (erfl) positivejulated many RNAs.

The pink and yellow lines represent translation and transcription links regbgcti

erfl ‘A__ ; i

ethylene

Fig 4.2 Visualize one signaling pathway.

The pathway ‘ethylene signaling’ viewed in ‘Organic’ layoutdgtoscape (left) and 3D tiered
layout in MetNetGE (right). The 3D tiered layout revealedesahvinteresting features which can
not be easily seen from ‘Organiclayout. For example, there are two metabolites (ethylene and
ATP) that regulate many proteins, and one protein (erfl) activates nhdy. R

Ol LaCu Zyl_i.lbl
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Chapter 5. Ontology Visualization using Enhanced
RSF Technique

Our goal in MetNetGE is to follow Shneiderman’s informatioakséeg mantra,
“overviews first, zoom and filter, and details on demand”. To give tbe aisneaningful
global view, MetNetGE utilizes the pathway ontology to hieraadhicorganize the
pathways. The ontology presents a directed acyclic graph, whesepagents may point

to the same child.

In the rest of this chapter, we will use graph terminology sxulee the ontology
and our visualization techniques. Thus the term “tree” means thestdatéure, but not
the plant. Also, “leaf” nhode means the node in the tree structureldleatnot have any
children, where “non-leaf’ node means the node with at least one ahdds not related

to the organism of a plant.

5.1. Visualize Tree Structure of Ontology
Among all the various tree visualization techniques, we implemethiedadial

space-filling (RSF) technique [26] because it effectivelVizatil the screen space and
showed the hierarchy clearly. In addition, in RSF each nomledé has its own region,

which provides the ability to map cumulative values onto those regions.

Researchers in economics have utilized 3D RSF to study himardme-
dependent data [34]. Their work inspires us to utilize the RSF to ainénlogies. To the

best of our knowledge, there are no applications of 3D RSF drawing in biology field.
RSF visualization of a pure tree uses the following rules:

® Each circular region represents one node in the tree. The leaf modede placed

on the edge of the drawing and the root node is placed at the center.
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® Each circular region has five variables: sweeping angle, depthsrkmatigth, height,

and color.

® The sweeping angle of a leaf node is determined by an attobthe corresponding
pathway. In our case, we have set each pathway to an equal weigrgpanning the

same angle.

® The sweeping angle of a non-leaf node is the sum of allhitdren’s sweeping

angles.

Initially, we use structure-based coloring [26] to convey moreatshical sense, where
the leaf node regions are colored according to the color wheel ambthieaf node
regions are colored as the weighted average of its childrelts &Ve also set the height
of each region proportional to the height of the sub-tree rooted atdtat Since color
and height only affect the individual region, we later use them o experimental

values (see Chapter 6).

Fig 5.1 shows a typical tree with eight leaf nodes and five ndmdbztes, labeled as
graph G1. The bottom figure shows the result of using RSF in 3D on GapNon-leaf
nodes correspond to pathway categories, e.g. “A” may reprasentesistanceThe leaf
nodes represent the pathways, e.g. “A2” may represeginine dependent acid
resistance pathwayin this example, we use uniform radius length and structure based

coloring, and map the height of the subtree to the region’s height.

www.manaraa.com



e\
Ak

Fig 5.1 Visualization of graph G1 with tree structure.

Graph G1 of hypothetical relationships among leaf nodes (pathwagk)nan-leaf nodes
(pathway categories), drawn in dot layout (left) and RSF (R&8llce-Filling) layout in
MetNetGE (right).

5.2. Visualize Directed Acyclic Graph of Ontology
Now, consider the graph G2 (Fig 5.2), which adds four non-tree edges We3lise the

metaphor of “satellite orbits” to represent these cross linkse&cin tree node which has
at least two parents, one orbit is drawn on the layer of that Mddedraw a blue edge,
called the uplink, from the center of the node’s region to the orbit.alVéhe parent who
connects the node in the spanning tree as the major parent and aotres @s minor
parents. The region of each node is placed under the region ddjds parent. Then for
every minor parent, we draw a green edge from the centerrefjitsn to the orbit of the
child, and call this edge the ‘downlink’ (Fig 5.2). The connections betieks and

orbits are called access points.

To help viewers find and trace interesting cross links, the orieed to be
distinguishable from one another. We first restrict orbits to epn in the middle area

of each layer, thus leave a visually apparent gap between orbits in adjaeent lay
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All Pathways

Fig 5.2 Visualization of graph G2 with non-tree structure.

Graph G2 drawn by dot layout (left) and ERSF (Enhanced Radial Spkog)Hayout in
MetNetGE using structure-based coloring (right). In the dot laygreen dashed lines represent
non-tree edges. In ERSF layout, yellow orbits and green, blue kpkesent non-tree relations.
E.g. the green line extruded from C contains two red-dots: the dmeeintersects with orbit of
AAl and the outer one intersects with orbit of AA2. The abovésorbean that C is the minor
parent of both AAL and AA2.

Then, to distinguish orbits in the same layer, our algorithm ets tat different
heights and distances from the center. We sort the orbits by the number of dowtlenks. T
orbit with most downlinks will be placed as the most distant and highéss
arrangement can help users answer questions like “Does the pentsphate pathway

belong to many categories?”

Coloring strategies can help visually divide orbits that areddcan the same layer.
Biologists’ feedback suggested that using the child’s color oerdift hues can help
distinguish orbits especially when the regions of categoreeslianmed. In our pseudo
example (Fig 5.3), the regions for non-leaf nodes are setresp#n@nt while the orbits

are set the same color with the child’s region. We call this mode orbitsghityndg mode.

As we can see from the examples (Fig 5.2, Fig 5.3), visualinm@itbit metaphor
with RSF has several advantages. First, this design clearlyngtishes between
spanning tree relationships and non-tree edges. Second, comparedniagseedth a

crosslink overlay [29], there are much fewer edge-crossingsd,Talir downlinks of a
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parent share only one link edge. Thus, the total length of those isdtpessame as the
length of the longest link. This property reduces the graph comylesipecially when a
child belongs to many parents or one parent is the minor parentainy other children

nodes.

Fig 5.3 Highlight orbits of graph G2.

The regions for non-leaf nodes are set as transparent whilelilis are set the same color with
the child’s region, thus user can easily trace the orbédas the color, e.g. the red orbit came
from the red node Al.
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Chapter 6. Mapping Gene Expression Data on
Ontology

6.1. Map Average Expression Value and Coefficient of Variation
Biologists studying the large scale gene expression datatiso@s want to know

which pathways or categories are highly expressed in a cedadition. For example,
they may ask questions like “Which pathway is highly expressed wieeknock out a

specific gene?”

Many tools provide a partial ability to answer the above questieois example,
Cytoscape allows users to map expression values to node color orhdleeEw coli
network, and the viewer can detect which parts of the network areyhaghivated.
However, it takes much more effort to further understand what pasharayinvolved in

such complex network.

Mapping the average gene expression value of a pathway onto its regitors
enables the biologist to detect which pathways or categoresighly activated in a

certain experiment.

The height of the region can be mapped to other values; e.g. thici€ot of
Variation (CoV) is also one interesting feature to consider. CoV desdrdye much each
gene changes its expression value among many experimental@onditne definition is

following:

CoV= Standard Deviation of that gene / Mean of that gene

N N
=100% /;Z (x —/,1)2//1 , Where i = Z)g/N andN is the number of conditions.
i=1 i=1

Since each pathway or category contains many geveegrovide options to show

either the maximum CoV among these genes, or tw $he average of CoV. We also
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design a novel attempt to map two values simultasigan the region’s height by tilting
the region. For example, the average CoV can begethip the height of the inner side of
the region, while the max CoV can be mapped tdthight of outer side. In this way, we
can easily detect regions that tilt a lot which meeaome genes under those regions have

very high CoV compared to other genes in the s&gen.

Fig 6.1 shows the result of mapping expressionesn color and CoV on height
for the pseudo data, and the result for real dataspresented in the Result section.
MetNetGE also use animation to show the valuesafgeries of experiments, e.g. one
time-series experiment with 7 time points will begented as animation with 7 frames.
User can use either the time controller from Godtfeth or the animation control panel

in MetNetGE to control the animation.

Fig 6.1 Mapping the gene expression data on pseudo dataset.

Pictures in first row show 4 frames of the animation wheggon color represents average gene
expression value. Picture in bottom left shows the tilted viewhisf data, where high region
shows high average CoV.

Ol LAC U Zyl_ilsl
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6.2. Map Differentially Expressed Genes on Ontology
The strategy of a biological scientist performimganics study is typically to look

for what parts of the network show significantlyfelient measurements across different
conditions. Questions like ‘Which pathways or carggs are most changed under

anaerobic stress?’ can be addressed by mappinglines onto the whole network.

Since biologists are more interested in the gehas dre differentially expressed
rather than the average express values, we camapdhat information on the ontology
drawing. We first define a threshold, e.g. 0.7 foldhnges; then every gene that changes
expression value greater than the threshold isiderex differentially expressed. Then
we count the number of up and down regulated gimesach category and pathway. To
show the total number of differentially expresseshes, we map the log value of that
number on region’s height. Then, we calculate #tm rof up/down regulated genes, and

map it on the region’s color. The result sectioavet the view of this mapping.

6.3. Map Over-representation p-values on Ontology
In most of the experimental data analysis taskspbists are not simply interested

in the expression value; instead, they are moreearoed about some statistical results
based on those raw data. For instance, one of mlogist collaborators has been
analyzing the over-representation of pathway categoOne typical working scenario is
that: first, she selected a group of genes whieh haghly expressed in one specific
experiment condition, or are differentially expreddetween two conditions. Then she
used a statistical test, e.g. Fish Exact Testatoutate p-value for every pathway and
categories. After that, she viewed the category @ndlue pair in the excel file, sorted
and found the ones that looks interesting. Sineedta in excel file didn’t contain the

ontology, she had hard time to make some meaniuiggabveries of the data. To help her
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better understand the p-value and the categoriefN&MGE implemented all the required
functions to visualize p-value on the ontology drayy e.g. selecting genes within desired
value range, performing statistical test, and nrappp-value on region colors. The

visualization result is shown in the Result section

Since there are many tools to help biologist irechg interesting genes and
performing varies statistical test with experimékata, we do not want to duplicate the
functions of those tools. Therefore, MetNetGE capart external list of genes, or
statistical test results in the simple CSV (CommeadBated Values) format. We also
provide simple python interface to let other depels to implement their statistical test

method in python module and used in MetNetGE.
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Chapter 7. Visualization Results
In this section, we present the pathway gene ogyofor E.coli and 3D Tiered

layout for Arabidopsis pathways that illustrate htWetNetGE can be helpful to gain
insight in ontology structure and individual patlyw&Ve will start our example with a

typical usage scenario.

7.1. Pathway Ontology Visualization
We illustrate how can use ontology visualizationdole to explore the pathway ontology

of E.coli from EcoCyc[11]. The EcoCyc ontology contains 42les, where 289 of them
are leaves. It also contains 508 edges, where & hanm-tree links. The Graphviz [35]
provide the ‘twopi’ layout which is considered vegood at showing hierarchical
structures. However, when used for this ontologyslaown in Fig 7.1, the hierarchical

structure can hardly be seen because the nondges elistorted the structure.

Other popular ontology exploration tools, e.g. OBt [13], can not represent this
dataset too. For example, the TreeViewer in Obb-bdcomes a very long list of
ontology names, and the Graph Editor becomes a& Bhbextremely wide tree due to the
high width/height ratio of the pathway ontology.dath editors, the global context of the

ontology is missing and the non-tree edges arelabus.

MetNetGE uses the ERSF layout to represent thislagy with structure-based coloring,
as in Fig 7.2. Several interesting features of dlaig set stand out. First, the ontology has
a very low height, i.e. the maximum distance frdma toot to the deepest leaf is only 6.
Second, the ontology is not a tree structure, exthe existence of orbits indicating that

several nodes have multiple parents. The orbitxaneentrated on the third layer, and
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one categoryriethylglyoxal detoxificatigncontains many children in other categories.

Furthermore, there is no child that belongs to ntlba@ four categories.

The names and other details of ontology terms eavidwed by simply zoom-in the view
through Google Earth. It's clear that some categgocontain much more pathways than

others, e.g. Biosynthesis contains almost halhefgathways.

Fig 7.1 Pathway ontology from EcoCyc using the ‘twopi’ layout fittwa Graphviz software, the
hierarchical structure can hardly be seen
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Fig 7.2 Pathway ontology shown with proposed ERSF layout.

It's clear that the ontology has hierarchical structure, dmdheight is 6. There are many
pathways that belong to at least two categories, e.g. threegyattiremindividual Amino Acids
Biosynthesiqon right) also belong to the categdmino Acids Degradatiofon left). Also many
pathways fromAldehyde Degradatiofon the left of 3rd layer) belong to categdethylglyoxal
Detoxification This kind of multiple inheritance information is hidden franost of other

visualization methods.
MetNetGE also provides functionalities similar t8O-edit, i.e., it also has a Windows

Explorer™-like tree viewer and it is linked to tRRSF drawing. Users can search the
name for specific ontology node, as usually doeh WBO-edit, and then locates the
resulting node in the tree viewer. Furthermorey es@ choose to show all the relations
between the selected node and other nodes in théogwy. Fig 7.3 shows an example of
above functions. It's clear that the selected cateqiode (Amines and Polyamines

Degradation) shares children with many other category nodeg, ‘Sugar Derivatives

Degradation. This kind of knowledge is also not easy to becalered by other

visualization methods.
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Name: Amino Acids Degradation
Short Name: Amino Acids DEG
. |Dindatabase: C55733
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&

Directions: To here - From here

. Descendant of Selected
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[l Hinor Parents of Selected

[P share children with Selected

Fig 7.3 Related pathways/categories of a selected category.

Amines Acids Degradation is selected (in red), its descdada green), ancestors (in yellow)
and other categories that share child with it (in blue) are shown.

Simple interactions like rotation, pan is reallydiel when tracing the ancestors or
decedents of a selected category. The relatedagytaéérms can be easily read from the
drawing. In other tools, users need to perform i\&erolls and expand actions in the

explorer list to find all decedents.

7.2. Mapping Omics Data on Pathway Ontology
After viewing the structure of pathway ontology,noealized that he can actually

map the experimental data on the ontology. He tmleone experimental data, which
compares gene expression profiles Bf coli grown with or withoutAcacia mearnsii

(black wattle) extract under anaerobic conditiorstiady tannin resistance strategy [36].
The data contains two replicates under two experiateonditions, and compares gene

expression of 4217 genes.

www.manaraa.com



49

He normally performs this task using Excel. In Bx@®m inputs the ontology terms
on each row on first column. Then he calculatesfdisdin the average gene expression
value on the second column. Then he fills otheormftion on other columns. If he
wants to see which pathways or categories havehitgjigest expression value, he can
simply sort the data by the second column, thencttegories he want to know will
become top rows. However, in this spreadsheet viem lose the relationship between
those categories, e.g. if pathway P1 and P2 ate loghly expressed, he wants to know

whether they belong to the same category, saddyhard to tell it in Excel. What he can

i

do is to search P1 and P2 in EcoCyc website, amthe# relation.
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Fig 7.4Average expression values are shown for each dondit

The orange and red color in condition 1 repredaat many categories have much higher expressiareval
in condition 1 (left) than in condition 2 (rightjvhen the view is tilted (bottom), the categorieshwiigh

Coefficient of variation (CoV) is shown by theighier height.
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In MetNetGE, Tom maps the average expression veluene color of ontology
regions, and maps the coefficient of variationht® height of those regions. After loading
the data, MetNetGE generate animation frame foh eaplicate. Then he can use GE’s
animation slider to identify highly expressed catégs or pathways, and those with high
CoV for each replicate. Fig 7.4 shows some franfeth@ animation. Reddish regions
represent categories with high average expressatueyand greenish regions show the

ones with low average expression value.

When playing the animation frame by frame, Tom didit that in condition 1, most
of the categories and pathways have high averggession value, especially the ones on
upper side of the ontology. However in conditionmgny categories’ average expression
value become low, it means a lot of genes in maatggories are expressed more in
tannin treated condition (condition 1). He can lgagrify this phenomenon by tilting the
3D view and see that many regions are high meathiag genes in them varies a lot

during this experiment.

He then wants to confirm the discovery that mosttled categories are down-
regulated. So he maps the differential expressiatitly on regions color, and maps the
total number of differentially expressed genes eigiit. Since in many regions, some
genes may up-regulated (the expression value isededuring the experiment), but some
other genes may down-regulated. As a result, Tomsntize ratio of up/down regulated
genes on color. The visualization result is showirig 7.5. He can see that most of the
upper side of ontology categories is down-regulaiddle some categories on the lower-

left side are up-regulated.

As he zoom in, we can see the details of thosegoaes, e.g. Amino acids

Biosynthesis has totally 62 genes that are diffemtty expressed, while 58 of them are
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down regulated. When viewing the super pathway goate two super pathways
immediately catch his eyes because they have mamg genes that are differentially
expressed than others (Fig 7.6). They auperpathway of histidine, purine, and
pyrimidine biosynthesisaandsuperpathway of chorismatAdmong the few categories that
are up-regulated, he can s8agar Acids Degradatiomas all 8 genes up regulated.

Details about a specific category/pathway can e se MetNetGE by simply select it.
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Fig 7.5 Differentially expressed genes mapped on ontology drawing.

Color indicates the ratio of up/down regulated genes; height sthewed value of total number
of differentially expressed genes. We can see that most ofpiher side of ontology categories is
down-regulated, while some categories on the lower-left side aegufated.

Tom can also see the raw experiment values witlpainallel coordinate plot and the
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spreadsheet for further investigation (Fig 7.7)rkrour view of ERSF layout, all the

differentially expressed categories and pathway easily be detected with the color
indicating whether it is mainly up-regulated or doevegulated. Only a couple of those
categories are listed in the paper [36] for thipesknent, which means the proposed

visual method can help us find more interestinguiess during an experiment.
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Fig 7.6 Zoom-in viewshows that two superpathwaysstidine, purine, and pyrimidine biosynthesisd
chorismatg have much more genes differentially expressed thher superpathways.

The other way to view the up or down regulated gead¢o use over-representation.
He can use any statistical method to select gearekthen calculate p-values for over-
representation among pathways using Fisher Exastt Tae calculated p-values can be

loaded on the ontology drawing in MetNetGE.
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Fig 7.7 Parallel coordinate plot in MetNetGE.

After identifying the interesting category ‘sugar acids ddgtion’, user can add genes in this
category, and view their values in both traditional parallel coordpiateand the spreadsheet.
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Chapter 8. A user study of visualizing ontology and
experimental data in system biology

A paper submitted to the International Journal afrtdn Computer Studies

Ming Jid, Stephen Gilbeft Eve Syrkin Wurtel& Julie A. Dickersoh?
! Dept. of Electrical and Computer Engineeriflguman Computer Interaction Program

3 Dept. of Genetics, Development and Cell Biologyya State University, Ames, 1A, USA.

jiam ng@ astate. edu, gilbert@astate.edu, nmash@astate. edu, julied@ astate. edu

Abstract. The increasing volume of experimental data in lgaal research has
posed several new requirements for the data vimatadn. Biologists need the
visualization to map the whole experimental dataooontologies to
understand the effect on system scale. One proptsgalit algorithm,
enhanced radial space-filling (ERSF), was desigiedneet these new
requirements. To demonstrate that ERSF is moreiefli than current tools
regarding these requirements, we conducted a wsdy svolving twenty
participants. The study suggested that althoughFeRR§uires longer learning
times, it largely outperforms the compared tool dompletion time in
representative tasks. This is mainly attributabte the orbit-metaphor
introduced in the ERSF drawing, which distinguishesmal edges and non-
tree edges, and the efficient use of screen spagtgoiv experimental data.

1 Introduction

Linking large-volume experimental data with hietacal ontologies that relate
biological concepts is a key step for understandamnplex biological systems.
Biologists need an overview of broader functiorakegories and their performance under
different experimental conditions to ask questisnsh as whether degradation pathways
have many highly expressed genes, or which biokbgigcrocess categories are
overrepresented in the data. These needs pose mmaique requirements on the

visualization of biological ontologies, such asngeable to visualize an overview of an
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ontology mapped with experimental data and cleahgw the non-tree connections in

ontology.

Current tools that visualize biological ontologiesrmally employ the traditional
Windows™ Explorer-like indented hierarchical lists are found in EcoCyc [11] and
AmiGO [30], or node-link based layouts (see Fig. d)y., OBOEdit [13] and BinGO
[31]. These kinds of layouts are well suited fongeof nodes, but quickly become

cluttered if hundreds of nodes are shown simultasigo

To address these problems, the authors proposeentienced radial space-filling
(ERSF) algorithm [37] that uses an intuitive onmietaphor to explicitly visualize non-
tree edges, and makes them appear differently tth@mmajor hierarchic structure. The
ERSF, as well as other proposed algorithms, wemdeimented in a software package

called MetNetGE [38].

A preliminary user test with the ERSF algorithmigaded that users preferred the
ERSF solution to the traditional indented list amube-link based layout [37]. In this
paper, we report the procedure and results ofgetarser study comparing the ERSF and
MetNetGE with a widely known software tool. The Kayding of our user study is that,
although ERSF requires much longer learning timkargely outperforms the competing
tool in our selected tasks in terms of completiomet Ontology Data and Visualization

Requirements

An ontology is a formal explicit description of c@pts, or classes in a domain of
discourse [39]. Biologists use ontologies to orgarbiological concepts. The Pathway
Ontology (PO) [9] is a controlled vocabulary foolagical pathways and their functions.
The PO is hierarchical, but it is not a pure treacture because several pathways may

have multiple parents. Ontologies are directed lacgraphs and contain both tree and
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non-tree edges. The non-tree edges are of particidgiest since they represent pathways

that perform multiple functions.

For example, th&. coli Pathway Ontology [11] contains 442 nodes, whei@ @8
them are pathways or leaves. It also contains 808% where 67 (13.2%) are non-tree
edges. Another feature typical of a PO is thatdépth of the hierarchy is normally low,

e.g., 6 forkE. coli, which results in a very large width/height ra@89/6=48.1).

In their daily research, biologists need to makasseof system-wide experimental
data and wish to understand how the experimentatlitons affect the underlying
biology. One typical type of experimental data rsnscriptomics (often referred to as
gene expression data), which describes the abuedahgene transcripts during an
experiment. The original data is typically a datatmx in which each row describes a
gene, and each column records the expression dévggnes under a certain condition,

e.g., drought stress or a mutation.

Based on the data and tasks biologists perform,btec requirements for the

visualization of a Pathway Ontology and experimleddéa are:

R1. View the whole ontology on a single screenamglobal knowledge and the

main hierarchical structure.
R2. View ontology details by navigation and/or mation (zoom, pan, rotation).

R3. Map experimental data on the ontology so thay tare easily visible and

distinguishable.

R4. Clearly show non-tree connections.
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1.1Related Works in Visualizing Ontology Data

Biologists normally view ontology structure as awlented list, e.g., EcoCyc [11]
and AmiGO [30]. One implementation of an indentst (Class Browser) is evaluated in
[40] with three other methods (Zoomable interfdéa;us + Context, and Node-link/tree).
The indented list lacks the ability to show noretredges. Users presented with an

indented list naturally think the underlying dataaipure tree structure.

Node-link based layouts are also widely supportent. example, OBO-Edit [13]
combines an indented tree browser (Tree Editor) amaphical tree drawing (Graph
Editor) (Fig. 1) which uses the node-link basealayfrom GraphViz [35]. BinGO[31], a
Cytoscape plug-in for analyzing Gene Ontology, ubesdefault 2D hierarchic layout
from Cytoscape. The node-link based layout is \wgryd at showing simple hierarchical
structures (e.g. containing less than 50 nodesyveder, when the number of entities

increases, those layouts become cluttered and ip@mansible.
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Fig. 1 OBO-Edit combines the node-link drawing (left) and indented tree brdwght) to represent
the Gene Ontology.

Treemap based systems [41] are able to visualzevtiole ontology with mapped
data in one screen, and are suitable for idengfyiegions of interest. However, the
hierarchical structure is hard to see in a treesiage it is a nesting-based layout which
superimposes the child nodes onto their parent n¢84]. Another limitation of the
treemap is that it lacks a meaningful represematib non-tree edges, as indicated in
requirement R4. As observed in [39], treemaps ahdrcspace-filling layouts normally
duplicate nodes which have multiple parents. If nloele being duplicated is a non-leaf
node, the whole substructure rooted at this nodebsi duplicated as well. Therefore
duplicating nodes in a hierarchic dataset may breaicrease a graph’s visual

complexity.

Katifori et al. [39] have also presented many taoid layout algorithms to visualize

ontologies and graphs in general. For example, petmplic tree [28] can handle
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thousands of nodes. However, in a hyperbolic tresmialization, it is difficult to

distinguish between tree and non-tree edges amondréds of edges since they are all
represented as links. Another disadvantage ishyyarbolic trees are not space efficient,
and normally only a couple of pixels are used fachrenode. Therefore attributes (like

gene expression data) mapped on nodes becomeohdiadihguish and interpret.

Space-filling methods are considered very spadeigfit and are good for mapping
attributes on node regions. Despite the disadvastafrectangular space-filling (such as
treemap), evaluations [42] find that radial spatted (RSF) methods [26] are quite

effective at preserving hierarchical relations.

The enhanced radial space-filling (ERSF) algoritfirst extracted one spanning
tree from the ontology data, and visualized it by RSF method[26]. To represent non-
tree edges in the ontology, ERSF algorithm drawsto®rfrom the nodes which have

multiple parents. This method makes the non-trege®dlearly stand out.

1.2User study goals

The initial reason to implement our proposed layalgorithms is that we find the
existing software tools are not good at enablirslgtaon the ontology dataset in viewing
and analyzing the whole topological structure andeustanding the experimental data.
We also closely observed how our biologist collalbars performed those tasks in their
daily work, and understand the huge amount of mlamask involved in using the
existing tools. To test whether ERSF is effective these tasks, we designed and
conducted a user study with 20 participants (sttsdeanbiology and computer science).
The hypothesis is that the ERSF methods can hefpodists to understand the
relationships between changes in pathways and rpetieese analysis tasks more easily

in terms of completion time.
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We chose not to mimic every aspect and featureisting tools; doing so would
be a waste of research time. Instead, we focusedhproving usability and performance
on the analyses that existing tools can’t handig well. As a result, the goal of our user
study is to selectively pick the tasks in whichrgsgave trouble with existing tools, and

see if their performance improves when using MeB¥et

Selecting the proper tasks to test in our userystudlso a hard problem on its own.
One reason is that biological tasks are complextane-consuming in general, and we
don’t want to require participants to spend too mtime in the study (we want to limit
the total participant time within one hour), or yheill get bored and frustrated, which
makes the evaluation less accurate. The othermaadbat the core contributions of our
algorithms are not confined to biological area. ylean also be applied to general
ontology visualization as well. Thus we can attradiroader range of participants if we
keep the biological concepts to a minimum. Thedtlwhallenge is that we want to use

tasks that are actually useful and needed for sersu

Based on the above reasons, we focused our staky tam pathway ontology and
the omics data mapped on it, which can be easpla@ed to both biology and computer
science students. We compared MetNetGE with theFEREh a highly used existing

tool, Cytoscape, a 2D graph display program. .

The details of the user study are described ini&e& The result and analysis of
the study are in Section 3. Section 4 discussexwaalliates the user study methodology

and results, and proposes further improvementslljrSection 5 concludes the analysis.

www.manaraa.com



61

2 Method
Our study included three steps. Participants wise given the tutorials of using
both tools to visualize ontology data. Then, thegdiboth tools to go through several

tasks. Finally, participants completed an onlinstgsiudy questionnaire.

2.1 Participants
We sent out recruiting emails (which includes thed$ Consent Form) to the

students in our research group, students in thiedyodepartment and students in the
computer science department. There were 23 rephiethe email, and 20 of whom
actually participated in the study. All participarwere graduate students and their ages
ranged from 23 to 35. We gave $10 to each partitipamong the 20 participants, 7
(35%) were from the biology department and 13 (6%9€)ye from computer science.

There are also 4 female participants (20%) andB066) male participants.

2.2 Study design
The independent variable (IV) of this study was slodtware package used. One

level was MetNetGE, and the other level was the pamed software, Cytoscape. The
dependant variables (DVs) were objective measurenadrihe participant’s performance
in completing the tasks, including completion tiraed the number of errors. Each

participant used both tools, thus this was a withibjects design.

2.3 Terminology
In order to better describe the tasks, we list sonp®rtant terminology below.

Pathway Ontology. The Pathway Ontology is a controlled term forhpatys. It has
a hierarchical structure, which consists of a segacture and many non-tree edges. We
will use graph terminology to describe the ontologlgus the term “tree” means the data

structure, “leaf’ node means a node in the tregcsire that does not have any children,
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and “non-leaf” node means a node with at leastatrle. In our ontology, leaf nodes are

Pathways, non-leaf nodes are Categories.

Descendant, Children and Parent For a given category, children are nodes
directly connected and under this given categohys Given category is called the parent
of these children nodes. Descendants are all nadgsr a given category, including all
indirectly connected ones. If a pathway is a dedaen of a category, we say this

category contains this pathway, and this pathwégnigs to this category.

Highly related categories If two categories have at least 3 common childrea

call them a pair of highly related categories.

Level: The root of the ontology is on level 0. Every addirectly under root is on

level one. The child’s level is one plus its paietavel.
Depth of the ontology The depth is defined as the maximum level of reafes.

The above terminologies used in the user study Westedescribed in the tutorial
section. In our pilot study, we found that usergdtéo forget terminologies and concepts.

Therefore, those concepts were also presentee ihith section of each task.

2.4 Pilot user study
We conducted a pilot user study with two peopleoum institute who were both

computer science students and familiar with thecepts of biological ontologies. Since
we wanted to test many aspects of the tools, tigenaf pilot study consisted of five
parts. The first three parts analyzed the topoldgtructure of a given ontology. To let
the user get familiar with the tools and the orgglgradually, we started with a very
simple ontology that contained only 13 nodes. Témsd part used a medium ontology
with one hundred nodes, which is actually the Gentwlogy Slim, or GO Slim [43]. The

3rd part used a much larger ontology that contaiieout 500 nodes, and it was the
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pathway ontology oE.Coli or Arabidopsis In the 4th part participants examined the
over-expression statistical significance (p-valogpped on the medium ontology. The
5th part let participants work on the mapping ofiaandata on the large 500 node

ontology.

However, the first participant in the pilot studyest a very long time in the tutorial
part, and used up the one-hour time without evenpbeting with one tool. As a result,
we reduced most of the tasks for the second pilmtysparticipant so she could finish the

study within one hour. The detailed tasks will iséeld in the sub-section Tasks.

During the pilot study, we found that the effortanalyze the topological structure
of a large ontology using Cytoscape was so demgntliat the participants got very
frustrated and declined to work on it anymore. aitgh they could perform the tasks on
this network fairly well using MetNetGE, we couldtrget a valid result for Cytoscape.
For this reason, we removed the analysis of lagge/arks task even though we believe

this is where MetNetGE largely outperforms Cytogcap

Cytoscape provides a wide range of 2D layout allgors. To focus the study, we
selected the best layout algorithm in Cytoscapesémh task and always used that layout
in the user study. Other user studies, e.g., [B8jcated that the force-directed Organic
layout appears to be the best automatic layousdoral network groups with around 50
nodes. However, when applied to the ontology in vser study, the Organic layout
generated a graph structure as in Fig. 2, which lvead to interpret for our tasks. One
major reason is that the existence of multiple iitiece edges distorted the layout, so the
whole hierarchy can not been seen. Therefore, weecthe Hierarchic layout, which is

widely used when analyzing hierarchical structure.
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Fig. 2 The medium size ontology is shown in Cytoscape with Organic laybetrdd rectangle is the
root, the white rectangles are categories, and the green cirelesafinodes. Due to the existence of
multiple inheritances, the ontology structure is distorted, which sndlextremely hard to understand

the topological structures.

2.5 Tasks
The final tasks used in the user study containedgarts. Part one concentrated on

analyzing the topological structure of one mediured pathway ontology (about 200
nodes). The ontology was extracted from the whalénway ontology and modified to
have some prominent features, e.g., added pairselated categories. To prevent
participants from carrying knowledge and the anstr@m the first tool, we used two

slightly different datasets in each tool. Cytoscamed a pathway ontology from
Arabidopsis while MetNetGE used pathway ontology frérColi. We also modified the

dataset so that the network used in MetNetGE wightsl more complex than the

corresponding network in Cytoscape. For example,niedium ontology in MetNetGE
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contained 218 nodes and 238 edges, while the o@gtwscape contained 206 nodes and
226 edges respectively. The structure of the ogtesoand the number of non-tree edges

were similar.

Since a participant might have forgotten the cotecepd visual cues and controls
learned in the tutorial parts, we provided hintbath tools. Table 1 lists the tasks for part

one and the hints for using MetNetGE.

Table 1 Part one of the user study tasks and funtssing MetNetGE.

ID | Task description Hint in MetNetGE
1 | Which category in level one contains the mosf leades in its| Find the category that hgs
descendants? largest angle. Do not need

to be the exact answer.

2 | Which category in level two contains the mostf leades in its| Find the category that has
descendants? largest angle in level 2.
3 | What is the maximum depth of this pathway ontgig The root has depth 0

4 | Please find out one pathway (leaf nodes), whashat least 2 parents, Try to find leaf node that
has white links.

5 | Please find 3 pathways, which each have at 8&patents. Looking for orbit that
intersects with at least twp
blue links.

6 | Can you find a pathway which has at least 6 paPen Looking for orbit which

has 6 red dots.
7 | Do you observe any pair of categories that agtetlti related (share atTry to find two pairs like
least 3 children)? this.

The first two tasks let participants find the categs in a certain level which had the
most leaf nodes. This information is importantbarlogist to get an initial understanding
of a given ontology. When a category has morenedkes it means that category is more
complex, or we have more knowledge about its fometiity. Tasks 4, 5, and 6 required
participants to find the pathways which had mud#tiggarents. Those pathways are
important in the biology field, because those paysvmay have several features. In other
ontologies, e.g., a computer program class hieyarttre classes which extend from

multiple classes are also important. The relatadgoaies in task 7 shared at least 3
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children. Those categories may have similar fumetities, and may present similar

behavior in omics data. In a computer science afiesgram, if two classes are related,
software developers may consider re-factoring thaées of these classes, e.g., merging
these two classes together or splitting them eughdr apart to reduce the duplication of

their functionalities.

Part 2 of the tasks (listed in Table 2) focusedhmanalysis of omics data mapped
on the whole pathway ontology. Normally, biologisteuld like to see the ontology
nodes that have extreme values in one conditian, (eauch higher than other nodes).
More often, they need to see which nodes changateya lot across two different
conditions. We cover both of these cases in oulystBesides being interested in the
experimental value of individual nodes, biologigtant to find if pathways in the same
category have a similar value, which takes theloggostructure into consideration. As a
result, we defined a region of nodes that consisfedne category and at least 3 of its
children with similar values in certain conditionde wanted participants to find such

regions in a single condition or across conditions.

Table 2 Part two of the user study tasks and afbinising MetNetGE.

ID Task description Hint for using MetNetGE
1 In condition 1, please find two regions which éasery high| You can zoom out to see the
value (pure red). overview of the ontology
2 Please find two regions which have very low va({dark
green) in Condition 1, but have very high valuerpred) in
condition 2.
3 Please find two regions which have very high ®aia
Condition 1, but have very low value in condition 3

One of the reasons to use the above tasks is thavamted users to focus on the
behavior of a group of nodes in a global scale.nMeed users could always zoom-out to

see the whole picture of what's happening durirggekperiments, and what's changed.
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These are the questions biologists always try ssvanwhen analyzing real experimental

data.

2.6 User study setting
Since neither software tool used in our user stdeyand significant computing

power to run, we used a Lend¥oT61p laptop with dedicated graphics processing uni
(GPU) and 15-inch screen. We connected the laptop 24-inch LCD screen with
1920x1200 resolution, so the participants couldvviee ontology in larger screen and
higher resolution. Since the names of ontology saale very long, writing them down
on papers would have cost a lot of time, which wWdwdve made the measurement of task
performance less accurate (e.g., the case whalmdira pathway requires 10 seconds,
but writing it down requires 20 seconds.). To solves problem, we created a
guestionnaire for the task using Google Forms whethuser copy and paste the answer
into a web browser viewable on the laptop’s scré@articipants could easily view the
ontology structure on the large screen while fgliaut answers on the smaller laptop

screen without switching applications.

Due to the difficulty of the tasks, participantsregiimes needed immediate help if
they forgot some concepts, or grew frustrated. Tthesobserver always sat beside the
participants and gave help when needed. For exanfplee participant forgets what the
color coding means in ERSF or Cytoscape, obseraerassist them. The number of
required helping moments was also recorded. Users wot asked to think aloud when

performing the tasks because we didn't want tactffeir performance.

2.7 Procedure
2.7.1 Learn tutorial network with both tools.
Every participant was first given the written cams®srm, and the form was signed

before starting the user study. The participann tsearted the tutorial from online
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instructions regarding a small ontology samplethis section, participants read through
the tutorials of each tool, and walk through soram@le tasks. Since the concept and
visualization metaphor of MetNetGE are non-tradiib to even computer sciences
students, we always started the tutorial with tgo§€cape version. The small ontology is
shown in Fig. 3. The visualization metaphors arplared in the caption of the figure.

Participants were given the same tasks as in pafttlie real task, although the answers
in this part were already given. Participants weneouraged to think about why the
answers were correct for each task. We observerdntiay of the participants were

confused about the concept of children and descésnd@hus the observers gave hints
about those concepts when participants came out tive wrong answers. We recorded

the time participants spent going through the tat@ection, and used it as an indication

of learning curve.

Fig. 3 The tutorial network in Cytoscape contains 13 nodes and 16 edges. The negresented by

red rectangle, other categories are white rectangles and leaf nodes arerge=en ci
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Fig. 4The same tutorial network in MetNetGE contains 13 nodes and 16 edges.

After finishing the tutorial in Cytoscape, partiaifts were asked to go through the
tutorial of MetNetGE. Our hypothesis was that MdtBIe required a greater learning
curve than that of Cytoscape. If one user stamsttitorial with Cytoscape may have
faster time in learning MetNetGE afterward. We extpd that even given this advantage,
MetNetGE still requires longer learning time. Thetworks in the two tutorials are
exactly the same, but used completely differentapi@rs. In order to maintain
consistency with the representation in Cytoscape, didn’'t use the structure-based
coloring [26] or the orbit-based coloring [38] imrostudy. Instead, we simply colored
every leaf node green, and colored every categtijewThe uplinks are white and the
downlinks are blue, and all the orbits are yellolhis simplified color design let
participants make connections between this netvamidk the counterpart in Cytoscape,

thus making it easier for them to understand th&apier in MetNetGE.

www.manaraa.com



70
2.7.2 Understand Topology Structure of Medium Network.

Depending on the ID of the participant, he or slas \given the real task on either
Cytoscape or MetNetGE. Participants' experiencesre weounterbalanced, with
participants with odd ID numbers starting with Ggape. In the Cytoscape version, the
medium network for task part 1 is shown in Fig.The top figure shows the overview
where individual nodes are hardly visible. As aitgsisers always need to zoom-in (as in
the bottom figure), and focused on a small pathefontology. Since the nodes and edges
are mixed together, participants constantly dragded nodes to see their edges, and
moved nodes to empty spaces. As expected, manigipants could not find all the
answers of task 5 (selecting pathways which haveast 3 parents) and task 7 (selecting
two pairs of highly related categories). They ndiyngave up after spending 3 - 5
minutes on each task. We counted each missing aresvene error. We will discuss

more in the Results section about how we analyzeget missing data points to consider

both error and time.

Fig. 5 The medium network in Cytoscape in the user study. Coloring is the astwas used in the
tutorial network in the previous figure. (Top) Overview of the full ontology. (Bottooonzed-in view

of a small part of the ontology. The network contains 206 nodes and 226 edges.
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After finishing task part one with Cytoscape, papants started using MetNetGE to
perform task part one. One possible alternativehie procedure is to let participant
immediately use Cytoscape to continue part two. élew, we found that since the tasks
involved too many concepts, it would save overatlet if we let user focus on a few
concepts at a time, and then move on to new cosic8ice the tasks in parts one and
two focus on different concepts, the procedure desgned to relieve participants from
keeping too many concepts in mind. Fig. 6 showsstiteenshot of viewing the medium
size ontology in MetNetGE. Participants can cleatw the multiple inheritance links
through the yellow orbits and blue, white linksndling the highly related categories was
initially challenging for participants, becausestiproperty is not directly mapped to any

metaphor.

To help the user finish this task, we provided $isntd reminded participants that the
blue link extended from a category shows that taatgory shares children with another
category. This important property is explainedhe MetNetGE tutorial, however, few
users remembered to use it in this task sincenbigised in previous tasks. As a result, a
blue link with many red dots means this categorgrati many children with other
category. After this hint, all the participants embered this property from the tutorial
section, and could then find the highly relatecegaties through those blue links. The
need for the hint in this task shows that the liegrrturve for MetNetGE is high, and
participants tend to forget its metaphors if na¢disegularly. For example, Fig. 7 shows
how the user can visually find one pair of sucthhigelated categories through blue link
and yellow orbits. As soon as participants wereimeed of this orbit metaphor, they
could quickly find the other pair of highly relatedtegories near the top of the given

ontology.
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Fig. 6 Medium size ontology is shown in MetNetGE. The ontology is part of H@olEpathway
ontology, which contains 218 nodes and 238 edges. The color coding is the same as in tutorial network

where multiple inheritances are represented by yellow orbits.
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Fig. 7 The zoomed-in view of the medium size ontology. Category Lipid Bibggis contains a blue
link that intersects three yellow orbits through three red dots. Tthose yellow orbits all end in the
pathways in the category Cell Structure Biosynthesis. These d¢mm¥edndicate that the two

categories are highly related.

2.7.3 Discover Trend of Experimental Data.
After finishing the topology task (part one of tfasks) using both tools, participants

moved on to task part two. Again, half of the paptnts used Cytoscape as their first
tool. They were presented with the screen as tleeirorrig. 8 where four experimental
conditions were mapped to a larger network. Theraoi each node indicates the average
gene expression value in the given condition. Dgréen represents a low value while
bright red represents a high value (this is thermom color coding in biology research).
We also prepared an alternative color coding fdrgeeen color blind participants where
brown and purple represented the extremes of tlue bar. All of the participants were
able to distinguish red and green in our user stadg thus we used the normal color

coding. As expected, the overview of the ontolagyCitoscape (as in the top of Fig. 8)
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becomes very thin and wide, where the color of eadividual node can be hardly seen.
Participants need to zoom in closely (as in thedootof Fig. 8) to a small portion of the

ontology in order to see the color of nodes andterce of edges clearly.

To switch to other conditions of this gene expmssilataset , participants could
click on a setting button on the left of Cytoscap@UI window. The normal workflow in
this task was that the participant started with éeeend (e.g., the left end) of the
ontology and zoomed in such that every node’s codaild be distinguished. Then he or
she switched between conditions to find whethemugsoof nodes satisfied the task
requirements. Normally, participants needed to@witack and forth several times since
they could focus only on a small portion of the ugroat one time. Although the
comfortable size of the zoom-in view varied forfelient participants, the ratio between
the visible region of zoom-in view and that of thbole graph typically ranged from 1:4
to 1:5. Therefore participants would repeat thevaborocedure at least 4 to 5 times to

search the answer in the whole graph.
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Fig. 8 The large ontology (contains 430 nodes &id edges) mapped with omics data in Cytoscape. The
top figure shows the overview; the bottom figurewh the zoomed-in view.

Participants also used the MetNetGE tool to view ttanscriptomic data. The
visualization is shown in Fig. 9. The color codiisggthe same with the one used in
Cytoscape (dark green for low and bright red faghli Since MetNetGE’s layout put

children directly under their parents, it was etsgee a group of related nodes having
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the same color. Also, since participants could gvsee the whole graph in any of the
conditions, they didn't need to always zoom in paet and pan to other parts of the
graph. They only need to zoom in when verifying #mswers. Most participants found

qualified regions by switching conditions only 2i3es.
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Fig. 9 The whole pathway ontology mapped with tha&os data of 4 experimental conditions. Currently,

the condition one is shown. Participants can switmditions in the GUI. The ontology contains 442ies

and 511 edges.

2.8 Surveys
After participants finished all the tasks, they @dated an online post-study survey.

No observer was present while participants comgléte survey. After submitting the

form, participants were finished with the study.

The post-study survey consisted of demographic toumess and general questions

regarding MetNetGE. The questions are presentédiate 3.

Table 3 The questions used in the post-study survey
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Questions 1 to 5 are demographic, and Questionsl@ focus on evaluation of tools and tasks. Qomsti

3,4,9 are Likert scale with 5 values.

Demographic Questions.

1 Which department or major are you in?
2 What is your occupation?

3 What's your level of computer skill in terms a$img computer software and
websites?

4 Are the biological concepts in this user studyyega understand?
5 Your gender?
Evaluation of tools and tasks

6 Which software do you prefer to use to navigaig @nderstand the overview of
Pathway Ontology Structure? (Task part one)

7 Which software do you prefer to use viewing ekpental conditions on
Pathway Ontology? (Task part two)

8 Overall, which software do you enjoy using?

9 Do you feel that the medium and large network€ytoscape are more complex
than the corresponding ones in MetNetGE?

10  What do you think are the biggest advantagédetNetGE?

11  What do you think are the primary limitationsadlvantages of MetNetGE?

3 Results

There are 20 participants in our study. As statetheé procedure of the user study,
we recorded time duration and number of errorsafigpants tried to complete each
task. It is natural to consider the number of eri@s the accuracy of each task. However,
since most of the tasks are visualization relatadst of the participants can get the
correct answers in most cases. The major differbebt@een tools is how long it takes the
participants to discover the results visually. Wge both completion time and the number

of errors as indicators of the efficiency of eaobl t
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We divided the tasks into meaningful groups andnedime for each group. For
example, we make Questions 1 to 3 to one grouphwibicused on the overall topological
knowledge of the medium size ontology. Questiots @ are grouped together since they
both concerned with the multiple inheritance. Quest is focused on the highly related
categories, and used much more time than any ainhgie question. Therefore it is
considered as a single task group. All three qoestiin part two are focused on

discovering interesting trend in experimental ctinds, thus are considered one group.

3.1 Task completion time
Fig. 10 shows the boxplot of completion time foe ttutorial tasks. As expected,

participants took significantly more time to leakftetNetGE (=20, p < .001) The
difference in average time is 330 seconds (5.5 teg)u The reason is that Cytoscape
used the traditional node and link graph to repreeatology, which is a familiar way to

investigate ontologies.

1200

1000

800
|

600
|

400
1

200
|

MNG CYs

Fig. 10 Boxplot of the completion time for tutori@sk. The lower bar shows the minimum. The lower
boundary of the box shows the 25%, or lower quariihe bar inside the box shows the median. Therupp
boundary of the box represents the 75%, or uppeartiter The upper bar shows the maximum. Finahg, t

small circles represent the outliers.
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We grouped similar tasks and analyzed the compidiioe of these task groups to
see if there is difference in using different todBne thing to notice is that several
participants didn’t correctly answer question Q@ &/. E.g., some participants could
find only one pair of highly related categoriedptoscape. In this case, we considered it
as a missing data problem. As a result, for padicis who had one error, the completion
time for Q7 in Cytoscape is the actual recordectptus average time to get one correct

answer (it is around 150 seconds in our study)

500
I

400
I

o
1

]
=
|

| -
|
|

T T T T T T T T
QI23MNG  Q123CYS Q456 MNG Q456 CYS Q7 MNG Q7 CcYs Gene MNG  Gene CYS

Fig. 11 Boxplot of completion time of all task gpmu

As we can see from Fig. 11, for all the task groistNetGE has lower mean task
completion times than Cytoscape. Typically useraeted tasks using MetNetGE twice

as fast as when using Cytoscape.

3.2 Normality test of sample data
Given the within subjects design, we used a depdnedest for paired samples. One

common assumption for the sample data of t-tetasthe sample dataset should follow
a normal distribution [44]. We tested the normataoution of the user study dataset

with the Shapiro-Wilk Normality Test [45, 46]. Weed the Shapiro.test() function from
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R, and got the result ifable 5in the Appendix. The higher the p-value, the nliely
the sample data follows the normal distributiorth p-value is greater than 0.05, we can
say the sample data are fit the normal. Since ofdsie recorded times follow the normal

distribution, they are good candidates for Studeiatéest.

It is also worth noticing that the time to finishet tutorial of MetNetGE barely
follows the Normal distribution (p-value 0.0526).n® possible reason for this is
participants involve both native and non-native lighg speakers. Since the reading
material in tutorial section is very long (more ntha00 words), native English speakers
have clear advantages in reading and going throlughutorial much faster. The other
possible reason is that some biologists may be faondiar with the concept of ontology
than some computer science students, thus makem frogress through the tutorial

more easily.

The other interesting result is the completion tifoe question 7 of MetNetGE
didn’t follow the normal distribution (p-value 0.06). One possible explanation is that to
find the pair of highly related categories mostclily, participants needed to find the blue
downlinks which intersect many orbits, and thercdrthose orbits to confirm that at least
three of them are originating from the same catggbhnis workflow is the reverse order
of how they would find multiple inheritance links.g. find pathways that have at least 3
parents). These data indicate that participants maty have equal ability to think

creatively and get the right answer by reversimggrtbrmal workflow.

3.3 Statistical analysis of results
The result of the Student’s t-test is showT able 4 and all p-values are much less

than 0.01. Some possible explanations are listéloeiDiscussion section.

Table 4 Student’s T-Test results of all sample data.
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The null hypothesis is that the mean completioreifor MetNetGE and Cytoscape task groups are the

same. P-value <= 0.05 means the Null Hypothesigjésted, and there is statistically significarffedence

between MetNetGE and Cytoscape in terms of conquigtime.

Sample Data T df p-value
Tutorial Completion Time in seconds 5.73 28.19 3.64E-6
Q123 Completion Time -8.6818 26.267 | 3.39E-9
Q456 Completion Time -4.4975 28.739 | 1.04E-4
Q7 Completion Time -7.1657 24933 | L.67E-7
Gene Expression Data Completipsv.1874 35.162 2.14E-8
Time

3.4 User preference and comments

Beside the objective measurements (completion tam& number of errors) we

gathered users’ subjective opinions after usindh ldobls. Table 3 listed the questions

used.

Q5 asked participants to choose which tool theyfepred using to view the

overview of pathway ontology structure. As we cae $rom Fig. 12, over 80% of

participants selected MetNetGE, 2 participants ctete “Hard to say”, and only 1

participant select Cytoscape.
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Partici pants Choice of Tools in Interview Protocol
|D M\GE OYS O Har dToSay
O
Q
_B 100%
= B = 80%
(0] [=}
&onl 60% |
2 iE = L
(o 5 40%
Bo 20%
= 0%
& 3 @ @
O Har dToSay 2 0 0
| CYS 1 0 0
O MG 17 20 20
Questi ons

Fig. 12 Percentage and count of how many partitiphave chosen each tool in questions 6 to 8 it pos
study survey. MNG stands for MetNetGE, CYS stamd<fytoscape.
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Fig. 13 Percentage and count of how many partitgpagree that “network in Cytoscape is more complex

than MetNetGE” (Question 8). The question is préseas a 1 to 5 scale, where 5 means strongly agree

One interesting and expected finding is that, 8@%banticipants strongly agree that
the network in Cytoscape is more complex than the m MetNetGE. In fact, the
network in MetNetGE is slightly more complex thdre tone in Cytoscape in terms of
number of nodes and edges (218 nodes and 238 eslg2@6 nodes and 226 edges). The
major reason for this result is that Cytoscape’'denand link representation contains
many edge crossing, which is considered one ofnthst important metrics in causing
visual complexity [23] in graph layout algorithmAlthough fewer edge crossings do not
guarantee better layout, more edge crossings hertaesthetics and presentation of

graphs.
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Questions 10 and 11 invited participants to wribenments about the advantages

and disadvantages of MetNetGE regarding the tagks®e common advantages

participants wrote are “easy to view conditiongxperiments,” “utilize screen real-estate

much better,” “no edge overlapping,” and “all thatal is prominently visible.” Some

comments are below.

e “The layout utilizes the screen real-estate muckebétan Cytoscape, so all the data is prominently
visible. Also, navigation around network feels meetsier to comprehend due to the various visual
elements that clearly stand out.”

e “The user can easily grasp the rough idea aboutwulin®le network in a very efficient way, e.g. depth
of the ontology, # of categories, etc.”

e ‘It creates a very pleasant and user-friendly eoviment for the user to play with it, and try out it
functionalities.”

e “The concentric ring layout makes it very easy &e ghe direct children and descendants of a
category. This is a large advantage over tryindaitow lines in Cytoscape. ”

Although most of the disadvantages are about tgk lgarning curve, participants
also mentioned that after getting used to it, &84 are easier to finish. Some quotes are

listed below.

e “While I find the poles linking a child to multiplgarents to be confusing at first, | ultimately foluit
easier to use in this user study.”

e “Need more time to understand the terminology antes, but once | get familiar with them, it
becomes easier later”

Participants who did not choose MetNetGE as thefepred tool to use in tasks
about pathway ontology structure noted that theaptedr was not straightforward and

required a high learning curve. For example,

e ‘It takes some getting used to since it is a new wharepresenting data. But once that is done,dsgu
its way better than using Cytoscape for the sampqae.”

The other common complaint is that the layout a&istwhere participants can'’t

move the nodes and regions around, a major lirartadf MetNetGE. For example,
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e “Not being able to move items around limits theruseonly a single view of the data. While thewie
is a good one, in Cytoscape | can "filter" out wgoanswers when | discover them by moving the
particular node off to the side.”

4 Discussion

4.1 Mental model and learning curve.
One possible reason for the high learning curviletNetGE is that the radial space

filling view of the ontology doesn't fit the mentalodel of common participants.

Mental models were first introduced by Johnsond.§7, 48] as an internal mental
representation of something in the world. Normad Bayne [49, 50] then modified and
extended the models to adapt new research studiediscoveries. Two types of mental
models are defined and well studied [51]: strudtaral functional. Generally, a structural
model makes predictions of actions based on famtgitaa system, while a functional

model describes actions that the system shoulduadter specific circumstances.

Ontologies are widely studied and used in manysareay. company hierarchy,
family relations, computer diagrams. In most visatlon in those areas, ontologies are
represented as node-link graphs. As a result, gyzatits have formed the structural
mental model that the ontology is a graph with maaogtes and edges connecting nodes.
Therefore, they could easily understand Cytoscapewe-link diagram for the small
tutorial network. Switching to the MetNetGE’s rddiapace filling (RSF) layout
contradicted most participants' own structural raentodel of how an ontology should
look. Thus, they needed more time to first resoiheecontradiction between their existing

mental model and the presented system image, anddform the new mental model.

Evidence of this contradiction was observed whenntreduced MetNetGE’s orbit
metaphor to represent multiple inheritances. Hpeids were first given instruction on

radial space filling without orbits. Then after thabits were introduced, some
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participants grew confused about which were thegmaies (parents) and which were the
leaf nodes (children). This may be due to the ggbtsimilarity of orbits in MetNetGE
to edges in Cytoscape (they are lines), while edig&€3ytoscape always connect nodes,

which is not always true in MetNetGE.

After participants correctly understood the taskdutorial section, most of them
formed the new mental model for MetNetGE and usezbirectly to finish later tasks

more quickly.

4.2 Analysis of tasks related to multi-inheritance.
As shown in Fig. 10 and Fig. 11, although MetNet@ers required much longer

than Cytoscape users to finish their respectivarials, MetNetGE had statistically better
completion times for our selected tasks and stnopgst-task user preferences. The main
reason for the advantage of MetNetGE in topolodiasks is that MetNetGE directly and
clearly represents this information by its ERSFhg@nced radial space filling) layout. For
example, Question 2 asks to find the category well2 which may contain the most
pathways. Although neither tool can give an exaswr to this question, MetNetGE'’s
ERSF draws the angle of each category proportipriallhow many leaf nodes exist
under its spanning tree, which is a good approxonabf how many pathways it
contains. As a result, participants need only semdtirough all categories in level 2, see
which has the largest angle, and choose the clearew the category IND-AMINO-
ACID-SYN (short for Individual Amino Acids Biosynésis). The result is shown in Fig.

14.

To answer this question in Cytoscape, participar@sd to dig into the whole
complex drawing where all the ontology relationshipere represented by edges (as in

Fig. 5). One strategy commonly deployed by paréinis was to first identify candidate
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categories in level 2, and then drag them to tipeofothe graph. Then they scanned the
tree under each category to find the largest ohés i§ a very time-consuming task, and
participants normally spend more time to verifyithresult than while using MetNetGE,

which indicates they are less confident about thegwer with Cytoscape.

VA I 4

IND-AMINO-AZID-S YN
“

Fig. 14 The view of medium sized ontology in Met@Et To find the category in level 2 which contains

the most pathways, participants need only to fireddategory with largest angle.

.

; «I

Fig. 15 This layout is modified by the user to simitasks. To find the highly-related categoriespynasers
moved candidate categories to the top of the digwéind moved their children to the bottom.

Fig. 14 also shows that MetNetGE has a clear adgenin completing multiple
inheritances related tasks in questions 4, 5 amdgg, finding pathways that have at least

3 parents. On average, as shown in Fig. 11, paatts using MetNetGE required about
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half the time to find answers to these questiomas iim Cytoscape. The main reason for
this difference is likely that MetNetGE’'s orbit rmaphor clearly manifested this
information. To find the pathway which had at leagtarents, participants needed only to
iterate through all the orbits, since only pathwayth multiple parents can have orbits.
They then scanned those orbits to find the onempaat least 3 red dots, where each red
dot means the pathway has one parent. However, whigly Cytoscape, participants
needed to go through almost every node. Sincéhalhbdes are linked with edges, it's
not clear which nodes have more than one edge theeadges are all cluttered together
as in Fig. 5. Participants needed to drag nodeswtre with extra space to see the
edges incident to them. Fig. 15 shows the layotgr afne participant had finished the
task. We can see that the final layout looks qdifierent than the original, which means
the participant modified the graph intensively. &sesult, the time to complete this task
in Cytoscape is proportional to the number of nodeshe graph, which can be
represented a®(n), if n is the number of nodes. With MetNetGE'’s orbit npétar, the
time to complete this task can be shortene®tic) wherek is the number of pathways

with multiple parents anki<n.

The above difference in completion time can alseX@ained by the Gestalt law of
perceptual organization [52]. Gestalt is a psyctpplterm which means "unified whole"
[53]. Gestalt theory attempts to describe how peomiganize visual elements into

perceptual groups or unified wholes when certainggrles are applied.

One of the important grouping principles in Gestiadiory is similarity vs. anomaly.
Anomaly occurs when an object is emphasized becausedissimilar to the objects
around it. Gestalt law states that the dissimilgiects normally become the focal points

and get more attention. In Cytoscape, all the imlatand connections are represented as
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links, thus the nodes which contain more parents similar to other nodes. In

MetNetGE, the nodes with single parents don’t hawe links or orbits. Thus the nodes
with multiple parents (having orbits) become anmualand get users’ attention easily.
This difference is likely one of the major reasavisy participants can find such nodes

much more quickly in MetNetGE.

It is also interesting to see that participanthigisCytoscape have a larger variation
in completion time. In Fig. 11, the standard devratind size of box plot of Cytoscape is
twice as large as that of MetNetGE. We suggestrélason is that since participants
needed to drag and investigate almost every nodiemdathe answer, some participants
were fortunate to select the right nodes afterstigating only a couple of nodes. Some
participants who were not as fortunate may hawsl tto first untangle the nodes in the

densest area, and it turned out that those nodksriig one or two parents.

In the post-study questionnaire, several userst@oiout that MetNetGE lacks the
ability to interactively move the nodes and regiansund. This requirement shows that
letting user modify the graph to create better giei® an important feature for

visualization tools.

4.3 Analysis of tasks related to gene expression experimental data
In the part two of our study, the tasks are relat®dunderstanding the gene

expression dataset on the pathway ontology. Paatits are asked to find which parts of
the ontology are highly or differentially expressadgiven experimental conditions. In
general, the tasks for understanding gene expreskata are easier than the tasks to
understand ontology structure. We observed that av€ytoscape, participants normally

didn't need to rearrange the nodes or modify tlaphyrstructure. However, MetNetGE
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was still much more efficient than Cytoscape inmerof completion time. We can

explain this by the Gestalt laws of closure andkpnity [54].

Proximity occurs when elements are placed closethay. Participants tended to
perceive those elements as a group. The experihtaskadeliberately asked participants
to find a region of nodes that consisted of onegaty and at least three of its children.
In MetNetGE, most children of a category are plaoechediately around the edge of the
category itself, thus they are close together artigipants naturally perceived them as a
visual group, or region. On the contrary, Cytoscapgy place some children far away
from their parents, thus making it difficult forntiaipants to realize those nodes formed a
region. A lot of participants’ time was spent oraexning the edges between nodes to
verify whether they were in the same region. Fgjsthows one example of representing a
region in both MetNetGE and Cytoscape. It is clbat it requires much more effort to

realize the red nodes in Cytoscape formed a region.

synthesis
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UITAMINS

Fig. 16 Different representations of one regiontN&GE (top) shows the region (Fatty acid biosysigle
as red blocks placed together. Cytoscape (botttimys the region (Vitamins) as red nodes connecyed b

edges where the children may be far away from tezient.

The other possible reason for the advantages oNMEIE is the effective use of
screen space by the ERSF layout, which was alsttgmbout by several participants. In
Cytoscape, a node’s color represents its omicsevaliowever, a vast amount of screen
space is blank, and the colored region is relatigatall compared with the whole screen.
When participants zoomed out in Cytoscape to viee whole graph, the color and
connections of nodes or regions grow indistinguiharl hus, participants always need to
zoom in to focus on a small part of the group dmehtpan to other parts. These extra
actions created unnecessary discontinuities invbr&flow, introducing an extra burden
to participants. In MetNetGE, almost all screencepia utilized to show data as colored
blocks. Participants can therefore comfortably zommh to see the whole screen while
maintaining the visibility of individual region (as Fig. 17). The workflow to examine

the experimental value remains continuous.
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Fig. 17 Screenshot of two experimental condition8letNetGE. Participants can easily compare ardl fin

regions that changed color in these conditionéwthole graph.

5 Conclusion

Linking large-volume experimental data with hietacal ontologies that relate
biological concepts is a key step for understandingplex biological systems. The
visualization of these data needs to clearly regrethe non-tree edges in the ontology
structure and present the whole experimental datane screen for biologists to
understand the overall effects of the experimeftsvever current visualize tools lack
the above abilities. The authors have proposedati@al space-filling (ERSF) algorithm
[37] to meet all the visualization requirementsthis paper, we reported the procedures
and results of one user study to compare the ER8RVEEtINetGE with a widely known

software tool.

On average, participants of the user study toolkuabweice the time to finish the

tutorial section of MetNetGE as compared to Cytpscalowever, when working on the
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real tasks, participants used only about half thee tin MetNetGE. For all the task
groups, the performance in using MetNetGE is stediby significant better than that of
Cytoscape. In conclusion, our user study clearipalestrates that the ERSF algorithm
provides biologists more efficient ways to visualiand analyze ontology and pathway

data.
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Appendix

Table 5 The Normality test result for all sample data ¢reled time for each task group).

For simplicity, MNG stands for MetNetGE, CYS starids Cytoscape. The p-value with green color means
the sample passed the normality test, thus itvi@lthe normal distribution. The p-value with yellealor

means the sample barely passed the normality Redd. means the sample is not following normal

distribution.

Sample Data Sample Size pValue
Tutorial MNG 20 0.0526
Tutorial CYS 20 0.3122
Q123 MNG 20 0.834
Q123 CYS 20 0.092
Q456 MNG 20 0.112
Q456 CYS 20 0.261
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Q7 MNG 20 0.004635
Q7 CYS 20 0.332
Experimental MNG 20 0.264
Experimental CYS 20 0.067
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Chapter 9. Conclusions
9.1. Summary
Meaningful visualization of large scale biologichlta is the key for achieving new

discoveries in system biology research. Howevesyalization tools used in these areas

often fail to present a meaningful and insightfigw of underlining data.

MetNetGE features a novel approach to integratevithealization of three different
datasets: the pathway diagrams, pathway ontology/ ttee omics data. We organized the
pathway diagrams by pathway ontology and propolsed&Enhanced Radial Space-Filling
(ERSF) technique to layout and show this ontoldgch ontology node is represented as
a colorful region in the drawing, and the detaithway diagram is drawn inside the
region. The multiple inheritance relationship ipresented by the concept of “orbits”.
This techniqgue can show the structure of ontologth vinundreds of nodes in one
computer screen, and facilitate the user to traeenbn-tree edges which may represent

interesting relations.

For a detailed view of individual pathways, the B&ed layout can be used to group
nodes into distinct layers based on node type dr-cellular location. Instead of
generating layouts for each layer independentlyfisgecalculate nodes’ positions on one
major plane, and then compute other nodes graduHtiys layout helps review cross-

layer patterns as well as letting the main metalrelactions standout.

The omics data were mapped onto both the ontologwidg and the pathway
diagram. By mapping average expression valueserdiftially expressed genes and
statistical test results onto the ontology drawiMgiNetGE enables biologists to discover

interesting patterns at a larger scale.
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To demonstrate the effectiveness of our proposgari#thms, we conducted a user
study with 20 participants. The user study let ipgrants to use MetNetGE and
Cytoscape to complete several biological tasks. thkks were selected as abstraction of
tasks biologist performed in day to day work. Thenpletion time for each task and each
tool were recorded and analyzed. Although MetNet&gtires higher learning time (680
seconds vs. 350 seconds) on average, it helpsiparits quickly finish the tasks. For all
the tasks, participants used significantly lessetim MetNetGE than in Cytoscape. For
example, tasks for finding ontology terms with & parents is 164 vs. 227 seconds;
finding highly related categories is 133 vs. 32dasels; and finding important region of
gene expression data is 186 vs. 311 seconds. Be#ideobjective measurement of
efficiency in completing tasks, more than 80% atipgants selected MetNetGE as their
preferred tool for completing ontology tasks anidpalticipants prefer using MetNetGE

for gene expression tasks.

The main advantage of ERSF layout is the efficiesg of screen space. One dataset
with around 500 nodes in the ontology can fit nycelithin one screen while each
individual node is distinguishable. The other adage of ERSF is using regions to
represent main hierarchy and using links to remtesaultiple inheritance relationship,
which are often the interesting part in the ontgloghis technique makes the multiple
inheritance relationship to be easily identifiecheOmajor disadvantage of ERSF is the
high learning curve, since users are not usedpresent ontology in spatial layout. We
implemented the ERSF in MetNetGE using Google EARh This implementation can
allow us to quickly build prototype to demonstréte effectiveness of ERSF. However,
the limitation of Google Earth API also constrairst to only generating static drawings,

instead of dynamically changed graphs as used iosCape.
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The Aligned 3D tiered layout can help user quiakhgderstand the structure of fairly
complex biological pathways (around 100 nodes). &l@w, since it is also implemented

using Google Earth API, the drawing is static.

9.2. Future Work
The ability to allow participants to manipulate modify the graph in real-time is

highly requested. Several participants suggestedthan post-study interview that
MetNetGE should enable users to move and modify dhmlogy as they worked.
Unfortunately, due to the limitation of Google EaAPI, programmers didn’t have the
ability to modify the graph shown in GE programroaliy. Thus, we did not modify
many important features of the graph on the flg,,ehanging spanning angle, removing

ontology nodes using animation which would leatutare studies.

Due to the high complexity and large scale of ljatal data, users don’t want to
view all the data and details simultaneously. Theyt to see the overview information
first, navigate the interesting part, and see @etan demand. As a result, a fully
interactive system, like Cytoscape, is much bdtierbiologists users in general tasks.
However, Cytoscape is limited by its ability thaanc mainly handle node link
representations. Future work which substitutes geyphical engines may allow plug-ins

to draw 3D space filling graphs.

MetNetGE can let users navigate the structure efarology and map data on it. It
would be interesting to also see multiple ontoled@ether. For example, the GOslim of
Arabidopsis may be slightly different than thateotoli. Visualization tools can overlap
these two medium sized ontologies together and therdifference of these ontologies

can be clearly represented. Although, MetNetGE tcanmplement this feature, new 3D

www.manaraa.com



97

visualization platforms may implement this featurssng techniques similar to the two

and half dimension layout [19].
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Availability and requirements
Project name: MetNetGE

Project home pagéttp://www.metnetge.org

Operating systems: Windows
Programming language: Python

Other requirements: Python 2.5 or higher; GooglghE&yQt and other required

libraries (listed in the documentation on projeacirte page)
License: Freely available under GNU GPL.

Restrictions to use by non-academics: None
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